Mercurial > pylearn
changeset 1409:cedb48a300fc
added a pca online estimator
author | Philippe Hamel <higgsbosonh@hotmail.com> |
---|---|
date | Mon, 31 Jan 2011 12:23:20 -0500 |
parents | 2993b2a5c1af |
children | e7844692e6e2 |
files | pylearn/algorithms/pca_online_estimator.py |
diffstat | 1 files changed, 191 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pylearn/algorithms/pca_online_estimator.py Mon Jan 31 12:23:20 2011 -0500 @@ -0,0 +1,191 @@ +# Copyright 2009 PA Manzagol (manzagop AT iro DOT umontreal DOT ca) +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +import numpy +from scipy import linalg + +# Todo: +# - complete docstring (explain arguments, pseudo code) +# - Consider case with discount = 1.0 +# - reevaluation when not at the end of a minibatch + +class PcaOnlineEstimator(object): + """Online estimation of the leading eigen values/vectors of the covariance + of some samples. + + Maintains a moving (with discount) low rank (n_eigen) estimate of the + covariance matrix of some observations. New observations are accumulated + until the batch is complete, at which point the low rank estimate is + reevaluated. + + Example: + + pca_esti = pca_online_estimator.PcaOnlineEstimator(dimension_of_the_samples) + + for i in range(number_of_samples): + pca_esti.observe(samples[i]) + + [eigvals, eigvecs] = pca_esti.getLeadingEigen() + + """ + + + def __init__(self, n_dim, n_eigen = 10, minibatch_size = 25, gamma = 0.999, regularizer = 1e-6, centering = True): + # dimension of the observations + self.n_dim = n_dim + # rank of the low-rank estimate + self.n_eigen = n_eigen + # how many observations between reevaluations of the low rank estimate + self.minibatch_size = minibatch_size + # the discount factor in the moving estimate + self.gamma = gamma + # regularizer of the covariance estimate + self.regularizer = regularizer + # wether we center the observations or not: obtain leading eigen of + # covariance (centering = True) vs second moment (centering = False) + self.centering = centering + + # Total number of observations: to compute the normalizer for the mean and + # the covariance. + self.n_observations = 0 + # Index in the current minibatch + self.minibatch_index = 0 + + # Matrix containing on its *rows*: + # - the current unnormalized eigen vector estimates + # - the observations since the last reevaluation + self.Xt = numpy.zeros([self.n_eigen + self.minibatch_size, self.n_dim]) + + # The discounted sum of the observations. + self.x_sum = numpy.zeros([self.n_dim]) + + # The Gram matrix of the observations, ie Xt Xt' (since Xt is rowwise) + self.G = numpy.zeros([self.n_eigen + self.minibatch_size, self.n_eigen + self.minibatch_size]) + for i in range(self.n_eigen): + self.G[i,i] = self.regularizer + + # I don't think it's worth "allocating" these 3 next (though they need to be + # declared). I don't know how to do in place operations... + + # Hold the results of the eigendecomposition of the Gram matrix G + # (eigen vectors on columns of V). + self.d = numpy.zeros([self.n_eigen + self.minibatch_size]) + self.V = numpy.zeros([self.n_eigen + self.minibatch_size, self.n_eigen + self.minibatch_size]) + + # Holds the unnormalized eigenvectors of the covariance matrix before + # they're copied back to Xt. + self.Ut = numpy.zeros([self.n_eigen, self.n_dim]) + + + def observe(self, x): + assert(numpy.size(x) == self.n_dim) + + self.n_observations += 1 + + # Add the *non-centered* observation to Xt. + row = self.n_eigen + self.minibatch_index + self.Xt[row] = x + + # Update the discounted sum of the observations. + self.x_sum *= self.gamma + self.x_sum += x + + # To get the mean, we must normalize the sum by: + # /gamma^(n_observations-1) + /gamma^(n_observations-2) + ... + 1 + normalizer = (1.0 - pow(self.gamma, self.n_observations)) /(1.0 - self.gamma); + #print "normalizer: ", normalizer + + # Now center the observation. + # We will lose the first observation as it is the only one in the mean. + if self.centering: + self.Xt[row] -= self.x_sum / normalizer + + # Multiply the observation by the discount compensator. Basically + # we make this observation look "younger" than the previous ones. The actual + # discount is applied in the reevaluation (and when solving the equations in + # the case of TONGA) by multiplying every direction with the same aging factor. + rn = pow(self.gamma, -0.5*(self.minibatch_index+1)); + self.Xt[row] *= rn + + # Update the Gram Matrix. + # The column. + self.G[:row+1,row] = numpy.dot( self.Xt[:row+1,:], self.Xt[row,:].transpose() ) + # The symetric row. + # There are row+1 values, but the diag doesn't need to get copied. + self.G[row,:row] = self.G[:row,row].transpose() + + self.minibatch_index += 1 + + if self.minibatch_index == self.minibatch_size: + self.reevaluate() + + + def reevaluate(self): + # TODO do the modifications to handle when this is not true. + assert(self.minibatch_index == self.minibatch_size); + + # Regularize - not necessary but in case + for i in range(self.n_eigen + self.minibatch_size): + self.G[i,i] += self.regularizer + + # The Gram matrix is up to date. Get its low rank eigendecomposition. + # NOTE: the eigenvalues are in ASCENDING order and the vectors are on + # the columns. + # With scipy 0.7, you can ask for only some eigenvalues (the n_eigen top + # ones) but it doesn't look loke it for scipy 0.6. + self.d, self.V = linalg.eigh(self.G) #, overwrite_a=True) + + # Convert the n_eigen LAST eigenvectors of the Gram matrix contained in V + # into *unnormalized* eigenvectors U of the covariance (unnormalized wrt + # the eigen values, not the moving average). + self.Ut = numpy.dot(self.V[:,-self.n_eigen:].transpose(), self.Xt) + + # Take into account the discount factor. + # Here, minibatch index is minibatch_size. We age everyone. Because of the + # previous multiplications to make some observations "younger" we multiply + # everyone by the same factor. + # TODO VERIFY THIS! + rn = pow(self.gamma, -0.5*(self.minibatch_index+1)) + inv_rn2 = 1.0/(rn*rn) + self.Ut *= 1.0/rn + self.d *= inv_rn2; + + #print "*** Reevaluate! ***" + #normalizer = (1.0 - pow(self.gamma, self.n_observations)) /(1.0 - self.gamma) + #print "normalizer: ", normalizer + #print self.d / normalizer + #print self.Ut # unnormalized eigen vectors (wrt eigenvalues AND moving average). + + # Update Xt, G and minibatch_index + self.Xt[:self.n_eigen,:] = self.Ut + + for i in range(self.n_eigen): + self.G[i,i] = self.d[-self.n_eigen+i] + + self.minibatch_index = 0 + + # Returns a copy of the current estimate of the eigen values and vectors + # (normalized vectors on rows), normalized by the discounted number of observations. + def getLeadingEigen(self): + # We subtract self.minibatch_index in case this call is not right after a reevaluate call. + normalizer = (1.0 - pow(self.gamma, self.n_observations - self.minibatch_index)) /(1.0 - self.gamma) + + eigvals = self.d[-self.n_eigen:] / normalizer + eigvecs = numpy.zeros([self.n_eigen, self.n_dim]) + for i in range(self.n_eigen): + eigvecs[i] = self.Ut[-self.n_eigen+i] / numpy.sqrt(numpy.dot(self.Ut[-self.n_eigen+i], self.Ut[-self.n_eigen+i])) + + return [eigvals, eigvecs] +