Mercurial > pylearn
changeset 759:61a3608d5767
Merged
author | Olivier Delalleau <delallea@iro> |
---|---|
date | Tue, 02 Jun 2009 22:26:29 -0400 |
parents | c60ad32e1f40 (current diff) 8447bc9bb2d4 (diff) |
children | 60394c460390 |
files | |
diffstat | 5 files changed, 59 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/algorithms/exponential_mean.py Tue Jun 02 22:26:04 2009 -0400 +++ b/pylearn/algorithms/exponential_mean.py Tue Jun 02 22:26:29 2009 -0400 @@ -14,6 +14,12 @@ :math:`self.curval = (1.0 - (1.0/max_denom)) * self.old_curval + (1.0/max_denom) * x` + + The symbolic buffer containing the running mean is called `old_curval`. (This has a value + in the ModuleInstance). + + The symbolic variable for the updated running mean is called `curval`. + """ max_denom = None
--- a/pylearn/algorithms/sgd.py Tue Jun 02 22:26:04 2009 -0400 +++ b/pylearn/algorithms/sgd.py Tue Jun 02 22:26:29 2009 -0400 @@ -4,10 +4,16 @@ import theano class StochasticGradientDescent(theano.Module): - """Fixed stepsize gradient descent""" + """Fixed stepsize gradient descent + + Methods for gradient descent are: + - step(arg_vals) which returns None and updates the params + - step_cost(arg_vals) which returns the cost value, and updates the params + + """ def __init__(self, args, cost, params, gradients=None, stepsize=None, - updates=None, auxout=None): + updates=None, auxout=None, methods=True): """ :param stepsize: the step to take in (negative) gradient direction :type stepsize: None, scalar value, or scalar TensorVariable @@ -15,8 +21,9 @@ :param updates: extra symbolic updates to make when evating either step or step_cost (these override the gradients if necessary) :type updatess: dict Variable -> Variable - :type auxout: auxiliary outputs, list containing output symbols to + :param auxout: auxiliary outputs, list containing output symbols to compute at the same time as cost (for efficiency) + :param methods: Should this module define the step and step_cost methods? """ super(StochasticGradientDescent, self).__init__() self.stepsize_init = None @@ -38,13 +45,19 @@ if updates is not None: self._updates.update(updates) - auxout = auxout if auxout else [] - self.step = theano.Method( - args, auxout, - updates=self._updates) - self.step_cost = theano.Method( - args, [cost]+auxout, - updates=self._updates) + if methods: + if auxout is None: + self.step = theano.Method(args, [], updates=self._updates) + self.step_cost = theano.Method(args, cost, updates=self._updates) + else: + # step cost always returns a list if auxout + self.step = theano.Method( + args, [] + auxout, + updates=self._updates) + self.step_cost = theano.Method( + args, [cost]+auxout, + updates=self._updates) + updates = property(lambda self: self._updates.copy())
--- a/pylearn/datasets/norb_small.py Tue Jun 02 22:26:04 2009 -0400 +++ b/pylearn/datasets/norb_small.py Tue Jun 02 22:26:29 2009 -0400 @@ -63,11 +63,14 @@ test = {} train['dat'] = os.path.join(dirpath, 'smallnorb-5x46789x9x18x6x2x96x96-training-dat.mat') train['cat'] = os.path.join(dirpath, 'smallnorb-5x46789x9x18x6x2x96x96-training-cat.mat') + train['info'] = os.path.join(dirpath, 'smallnorb-5x46789x9x18x6x2x96x96-training-info.mat') test['dat'] = os.path.join(dirpath, 'smallnorb-5x01235x9x18x6x2x96x96-testing-dat.mat') test['cat'] = os.path.join(dirpath, 'smallnorb-5x01235x9x18x6x2x96x96-testing-cat.mat') + test['info'] = os.path.join(dirpath, 'smallnorb-5x01235x9x18x6x2x96x96-testing-info.mat') path = Paths() - def __init__(self, ntrain=19440, nvalid=4860, ntest=24300, + def __init__(self, ntrain=19440, nvalid=4860, ntest=24300, + valid_variant=None, downsample_amt=1, seed=1, normalize=False, mode='stereo', dtype='int8'): @@ -83,11 +86,26 @@ self.dtype = dtype rng = numpy.random.RandomState(seed) - self.indices = rng.permutation(self.nsamples) - self.itr = self.indices[0:ntrain] - self.ival = self.indices[ntrain:ntrain+nvalid] + if valid_variant is None: + # The validation set is just a random subset of training + self.indices = rng.permutation(self.nsamples) + self.itr = self.indices[0:ntrain] + self.ival = self.indices[ntrain:ntrain+nvalid] + elif valid_variant in (4,6,7,8,9): + # The validation set consists in an instance of each category + # In order to know which indices correspond to which instance, + # we need to load the 'info' files. + train_info = read(open(train['info'])) + + ordered_itrain = numpy.nonzero(train_info[:,0] != valid_variant)[0] + ordered_ivalid = numpy.nonzero(train_info[:,0] == valid_variant)[0] + + # TODO: randomize + self.itr = ordered_itrain + self.ival = ordered_ivalid + self.current = None - + def load(self, dataset='train'): if dataset == 'train' or dataset=='valid': @@ -99,7 +117,7 @@ print 'need to reload from train file' dat, cat = load_file(self.path.train, self.normalize, self.downsample_amt, self.dtype) - + x = dat[self.itr,...].reshape(self.ntrain,-1) y = cat[self.itr] self.dat1 = Dataset.Obj(x=x, y=y) # training @@ -126,7 +144,7 @@ x = dat.reshape(self.nsamples,-1) y = cat self.dat1 = Dataset.Obj(x=x, y=y) - + del dat, cat, x, y rval = self.dat1
--- a/pylearn/external/wrap_libsvm.py Tue Jun 02 22:26:04 2009 -0400 +++ b/pylearn/external/wrap_libsvm.py Tue Jun 02 22:26:29 2009 -0400 @@ -66,7 +66,7 @@ svm_problem = libsvm.svm_problem svm_parameter = libsvm.svm_parameter -RBF = libsvm.svm_RBF +RBF = libsvm.RBF #################################### @@ -159,7 +159,7 @@ def train_rbf_model(train_X, train_Y, C, gamma): param = libsvm.svm_parameter(C=C, kernel_type=libsvm.RBF, gamma=gamma) problem = libsvm.svm_problem(train_Y, train_X) - model libsvm.svm_model(problem, param) + model = svm_model(problem, param) #save_filename = state.save_filename #model.save(save_filename) @@ -181,7 +181,7 @@ train_set=None, svm_param=dict(kernel='RBF', C=C, gamma=g), save_filename='model_RBF_C%f_G%f.libsvm') - for C in C_grid, + for C in C_grid for g in gamma_grid] # will return quickly if jobs have already run
--- a/pylearn/io/image_tiling.py Tue Jun 02 22:26:04 2009 -0400 +++ b/pylearn/io/image_tiling.py Tue Jun 02 22:26:29 2009 -0400 @@ -5,10 +5,10 @@ import numpy from PIL import Image -def scale_to_unit_interval(ndar): +def scale_to_unit_interval(ndar,eps=1e-8): ndar = ndar.copy() ndar -= ndar.min() - ndar *= 1.0 / ndar.max() + ndar *= 1.0 / (ndar.max()+eps) return ndar def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0,0),