Mercurial > pylearn
changeset 1469:c41fdf8c35b8
fix about floatX=float32 to remove error in the build bot.
author | Frederic Bastien <nouiz@nouiz.org> |
---|---|
date | Wed, 27 Apr 2011 11:34:36 -0400 |
parents | cac29ca79a74 |
children | a57f4839a9d8 e7c4d031d333 |
files | pylearn/algorithms/aa.py |
diffstat | 1 files changed, 10 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/algorithms/aa.py Wed Apr 27 10:43:04 2011 -0400 +++ b/pylearn/algorithms/aa.py Wed Apr 27 11:34:36 2011 -0400 @@ -2,6 +2,8 @@ import theano from theano import tensor as T from theano.tensor import nnet as NN +floatX = theano.config.floatX + import numpy as N class AutoEncoder(theano.Module): @@ -73,11 +75,15 @@ if input_size is not None: sz = (input_size, hidden_size) range = 1/N.sqrt(input_size) - obj.w1 = R.uniform(size = sz, low = -range, high = range) + if floatX=='float32': + range = N.float32(range) + obj.w1 = N.asarray(R.uniform(size = sz, low = -range, high = range), + dtype=floatX) if not self.tie_weights: - obj.w2 = R.uniform(size = list(reversed(sz)), low = -range, high = range) - obj.b1 = N.zeros(hidden_size) - obj.b2 = N.zeros(input_size) + obj.w2 = N.asarray(R.uniform(size = list(reversed(sz)), low = -range, high = range), + dtype=floatX) + obj.b1 = N.zeros(hidden_size, dtype=floatX) + obj.b2 = N.zeros(input_size, dtype=floatX) def build_regularization(self): return T.zero() # no regularization!