Mercurial > pylearn
changeset 1272:ba25c6e4f55d
mcRBM working with whole learning algo in theano
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Sat, 04 Sep 2010 19:32:27 -0400 |
parents | cc6c6d7234a7 |
children | 7bb5dd98e671 |
files | pylearn/algorithms/mcRBM.py pylearn/algorithms/tests/test_mcRBM.py |
diffstat | 2 files changed, 176 insertions(+), 89 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/algorithms/mcRBM.py Sat Sep 04 19:31:16 2010 -0400 +++ b/pylearn/algorithms/mcRBM.py Sat Sep 04 19:32:27 2010 -0400 @@ -199,6 +199,8 @@ from theano import tensor as TT floatX = theano.config.floatX +sharedX = lambda X, name : shared(numpy.asarray(X, dtype=floatX), name=name) + import pylearn #TODO: clean up the HMC_sampler code #TODO: think of naming convention for acronyms + suffix? @@ -213,31 +215,83 @@ # ########################################### -#TODO: Document, move to pylearn's math lib def l1(X): + """ + :param X: TensorType variable + + :rtype: TensorType scalar + + :returns: the sum of absolute values of the terms in X + + :math: \sum_i |X_i| + + Where i is an appropriately dimensioned index. + + """ return abs(X).sum() -#TODO: Document, move to pylearn's math lib def l2(X): + """ + :param X: TensorType variable + + :rtype: TensorType scalar + + :returns: the sum of absolute values of the terms in X + + :math: \sqrt{ \sum_i X_i^2 } + + Where i is an appropriately dimensioned index. + + """ return TT.sqrt((X**2).sum()) -#TODO: Document, move to pylearn's math lib def contrastive_cost(free_energy_fn, pos_v, neg_v): + """ + :param free_energy_fn: lambda (TensorType matrix MxN) -> TensorType vector of M free energies + :param pos_v: TensorType matrix MxN of M "positive phase" particles + :param neg_v: TensorType matrix MxN of M "negative phase" particles + + :returns: TensorType scalar that's the sum of the difference of free energies + + :math: \sum_i free_energy(pos_v[i]) - free_energy(neg_v[i]) + + """ return (free_energy_fn(pos_v) - free_energy_fn(neg_v)).sum() -#TODO: Typical use of contrastive_cost is to later use tensor.grad, but in that case we want to -# block gradient going through neg_v -def contrastive_grad(free_energy_fn, pos_v, neg_v, params, other_cost=0): +def contrastive_grad(free_energy_fn, pos_v, neg_v, wrt, other_cost=0): """ + :param free_energy_fn: lambda (TensorType matrix MxN) -> TensorType vector of M free energies :param pos_v: positive-phase sample of visible units :param neg_v: negative-phase sample of visible units + :param wrt: TensorType variables with respect to which we want gradients (similar to the + 'wrt' argument to tensor.grad) + :param other_cost: TensorType scalar + + :returns: TensorType variables for the gradient on each of the 'wrt' arguments + + + :math: Cost = other_cost + \sum_i free_energy(pos_v[i]) - free_energy(neg_v[i]) + :math: d Cost / dW for W in `wrt` + + + This function is similar to tensor.grad - it returns the gradient[s] on a cost with respect + to one or more parameters. The difference between tensor.grad and this function is that + the negative phase term (`neg_v`) is considered constant, i.e. d `Cost` / d `neg_v` = 0. + This is desirable because `neg_v` might be the result of a sampling expression involving + some of the parameters, but the contrastive divergence algorithm does not call for + backpropagating through the sampling procedure. + + Warning - if other_cost depends on pos_v or neg_v and you *do* want to backpropagate from + the `other_cost` through those terms, then this function is inappropriate. In that case, + you should call tensor.grad separately for the other_cost and add the gradient expressions + you get from ``contrastive_grad(..., other_cost=0)`` + """ - #block the grad through neg_v cost=contrastive_cost(free_energy_fn, pos_v, neg_v) if other_cost: cost = cost + other_cost return theano.tensor.grad(cost, - wrt=params, + wrt=wrt, consider_constant=[neg_v]) ########################################### @@ -256,6 +310,7 @@ - a - the visible bias (theano shared variable) - b - the covariance bias (theano shared variable) - c - the mean bias (theano shared variable) + """ def __init__(self, U, W, a, b, c): self.U = U @@ -329,84 +384,152 @@ if n_visible is None: n_visible = self.n_visible_units() rval = HMC_sampler.new_from_shared_positions( - shared_positions = shared( + shared_positions = sharedX( rng.randn( n_particles, - n_visible).astype(floatX), + n_visible), name='particles'), energy_fn=self.free_energy_given_v, seed=int(rng.randint(2**30))) return rval def as_feedforward_layer(self, v): + """Return a dictionary with keys: inputs, outputs and params + + The inputs is [v] + + The outputs is :math:`[E[h|v], E[g|v]]` where `h` is the covariance hidden units and `g` is + the mean hidden units. + + The params are ``[U, W, b, c]``, the model parameters that enter into the conditional + expectations. + + :TODO: add an optional parameter to return only one of the expections. + + """ return dict( - outputs = self.expected_h_g_given_v(v), + inputs = [v], + outputs = list(self.expected_h_g_given_v(v)), params = [self.U, self.W, self.b, self.c], ) @classmethod - def alloc(cls, n_I, n_K, n_J, rng = 8923402190): + def alloc(cls, n_I, n_K, n_J, rng = 8923402190, + U_range=0.02, + W_range=0.05, + a_ival=0, + b_ival=2, + c_ival=-2): """ - Return a MeanCovRBM instance with randomly-initialized parameters. + Return a MeanCovRBM instance with randomly-initialized shared variable parameters. :param n_I: input dimensionality :param n_K: number of covariance hidden units :param n_J: number of mean filters (linear) - :param rng: seed or numpy RandomState object to initialize params + :param rng: seed or numpy RandomState object to initialize parameters + + :note: + Constants for initial ranges and values taken from train_mcRBM.py. """ if not hasattr(rng, 'randn'): rng = np.random.RandomState(rng) - def shrd(X,name): - return shared(X.astype(floatX), name=name) + rval = cls( + U = sharedX(U_range * rng.randn(n_I, n_K),'U'), + W = sharedX(W_range * rng.randn(n_I, n_J),'W'), + a = sharedX(np.ones(n_I)*a_ival,'a'), + b = sharedX(np.ones(n_K)*b_ival,'b'), + c = sharedX(np.ones(n_J)*c_ival,'c'),) - # initialization taken from train_mcRBM.py - rval = cls( - U = shrd(0.02 * rng.randn(n_I, n_K),'U'), - W = shrd(0.05 * rng.randn(n_I, n_J),'W'), - a = shrd(np.ones(n_I)*(0),'a'), - b = shrd(np.ones(n_K)*2,'b'), - c = shrd(np.ones(n_J)*(-2),'c')) - - rval.params = [rval.U, rval.W, rval.a, rval.b, rval.c] + rval.params = lambda : [rval.U, rval.W, rval.a, rval.b, rval.c] return rval class mcRBMTrainer(object): - """ + """Light-weight class encapsulating math for mcRBM training Attributes: - - rbm - - sampler - - normVF - - learn_rate - - learn_rate_multipliers + - rbm - an mcRBM instance + - sampler - an HMC_sampler instance + - normVF - geometrically updated norm of U matrix columns (shared var) + - learn_rate - SGD learning rate [un-annealed] + - learn_rate_multipliers - the learning rates for each of the parameters of the rbm (in + order corresponding to what's returned by ``rbm.params()``) + - l1_penalty - float or TensorType scalar to modulate l1 penalty of rbm.U and rbm.W + - iter - number of cd_updates (shared var) - used to anneal the effective learn_rate + - lr_anneal_start - scalar or TensorType scalar - iter at which time to start decreasing + the learning rate proportional to 1/iter """ + # TODO: accept a GD algo as an argument? + @classmethod + def alloc(cls, rbm, visible_batch, batchsize, initial_lr=0.075, rng=234, + l1_penalty=0, + learn_rate_multipliers=[2, .2, .02, .1, .02], + lr_anneal_start=2000, + ): + + """ + :param rbm: mcRBM instance to train + :param visible_batch: TensorType variable for training data + :param batchsize: the number of rows in visible_batch + :param initial_lr: the learning rate (may be annealed) + :param rng: seed or RandomState to initialze PCD sampler + :param l1_penalty: see class doc + :param learn_rate_multipliers: see class doc + :param lr_anneal_start: see class doc + """ + #TODO: :param lr_anneal_iter: the iteration at which 1/t annealing will begin + + #TODO: get batchsize from visible_batch?? + # allocates shared var for negative phase particles + + + # TODO: should normVF be initialized to match the size of rbm.U ? + + return cls( + rbm=rbm, + visible_batch=visible_batch, + sampler=rbm.sampler(batchsize, rng=rng), + normVF=sharedX(1.0, 'normVF'), + learn_rate=sharedX(initial_lr/batchsize, 'learn_rate'), + iter=sharedX(0, 'iter'), + l1_penalty=l1_penalty, + learn_rate_multipliers=learn_rate_multipliers, + lr_anneal_start=lr_anneal_start) + def __init__(self, **kwargs): self.__dict__.update(kwargs) def normalize_U(self, new_U): - #TODO: write the docstring + """ + :param new_U: a proposed new value for rbm.U + + :returns: a pair of TensorType variables: + a corrected new value for U, and a new value for self.normVF + + This is a weird normalization procedure, but the sample code for the paper has it, and + it seems to be important. + """ U_norms = TT.sqrt((new_U**2).sum(axis=0)) new_normVF = .95 * self.normVF + .05 * TT.mean(U_norms) - return (new_U * this_normVF / U_norms), new_normVF + return (new_U * new_normVF / U_norms), new_normVF - def contrastive_grads(self, visible_batch, params=None): - if params is not None: - params = self.rbm.params + def contrastive_grads(self): + """Return the contrastive divergence gradients on the parameters of self.rbm """ return contrastive_grad( free_energy_fn=self.rbm.free_energy_given_v, - pos_v=visible_batch, + pos_v=self.visible_batch, neg_v=self.sampler.positions, - params=params, + wrt = self.rbm.params(), other_cost=(l1(self.rbm.U)+l1(self.rbm.W)) * self.l1_penalty) + def cd_updates(self): + """ + Return a dictionary of shared variable updates that implements contrastive divergence + learning by stochastic gradient descent with an annealed learning rate. + """ - def cd_updates(self, visible_batch, params=None, rng=89234): - if params is not None: - params = self.rbm.params - - grads = self.contrastive_grads(visible_batch, params) + grads = self.contrastive_grads() # contrastive divergence updates # TODO: sgd_updates is a particular optization algo (others are possible) @@ -416,44 +539,26 @@ # TODO: when sgd has an annealing schedule, this should # go through that mechanism. - # TODO: parametrize these constants (e.g. 2000) - - ups[self.iter] = self.iter + 1 lr = TT.clip( - self.learn_rate * 2000 / (self.iter+1), + self.learn_rate * TT.cast(self.lr_anneal_start / (self.iter+1), floatX), 0.0, #min self.learn_rate) #max - ups = sgd_updates( - params, + ups = dict(sgd_updates( + self.rbm.params(), grads, - stepsizes=[a*lr for a in learn_rate_multipliers]) + stepsizes=[a*lr for a in self.learn_rate_multipliers])) + + ups[self.iter] = self.iter + 1 # sampler updates ups.update(dict(self.sampler.updates())) # add trainer updates (replace CD update of U) - ups[self.rbm.U], ups[self.normVF] = self.normalize_U(ups[U]) + ups[self.rbm.U], ups[self.normVF] = self.normalize_U(ups[self.rbm.U]) return ups - # TODO: accept a GD algo as an argument? - @classmethod - def alloc(cls, rbm, visible_batch, batchsize, initial_lr=0.075, rng=234, - l1_penalty=0, - learn_rate_multipliers=[2, .2, .02, .1, .02]): - # allocates shared var for negative phase particles - - return cls( - rbm=rbm, - sampler=rbm.sampler(batchsize, rng=rng), - normVF=shared(1.0, 'normVF'), - learn_rate=shared(initial_lr/batchsize, 'learn_rate'), - iter=shared(0, 'iter'), - l1_penalty=l1_penalty, - learn_rate_multipliers=learn_rate_multipliers) - - if __name__ == '__main__': import pylearn.algorithms.tests.test_mcRBM pylearn.algorithms.tests.test_mcRBM.test_reproduce_ranzato_hinton_2010(as_unittest=True)
--- a/pylearn/algorithms/tests/test_mcRBM.py Sat Sep 04 19:31:16 2010 -0400 +++ b/pylearn/algorithms/tests/test_mcRBM.py Sat Sep 04 19:32:27 2010 -0400 @@ -60,10 +60,10 @@ rbm=trainer.rbm smplr = trainer.sampler - grads = trainer.contrastive_grads(train_batch) + grads = trainer.contrastive_grads() learn_fn = function([batch_idx, trainer.l1_penalty], outputs=[grads[0].norm(2), grads[0].norm(2), grads[1].norm(2)], - updates=trainer.cd_updates(train_batch)) + updates=trainer.cd_updates()) print "Learning..." last_epoch = -1 @@ -121,16 +121,7 @@ print 'arate', smplr.avg_acceptance_rate - if 0: - # Continue HMC chain - smplr.simulate() - - # Do CD update - l2_of_Ugrad = learn_fn(jj, - lr/max(1, jj/(20*epoch_size/batchsize)), - effective_l1_penalty) - - learn_fn(jj, effective_l1_penalty) + l2_of_Ugrad = learn_fn(jj, effective_l1_penalty) if print_jj: print 'l2(U_grad)', float(l2_of_Ugrad[0]), @@ -146,12 +137,3 @@ print "Activating L1 weight decay" effective_l1_penalty = 1e-3 - # weird normalization technique... - # It constrains all the columns of the matrix to have the same length - if 0: - U = rbm.U.value - U_norms = np.sqrt((U*U).sum(axis=0)) - assert len(U_norms) == n_K - normVF = .95 * normVF + .05 * np.mean(U_norms) - rbm.U.value = rbm.U.value * normVF/U_norms -