Mercurial > pylearn
changeset 1101:b422cbaddc52
v2planning - minor edits to use_cases
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Mon, 13 Sep 2010 13:42:26 -0400 |
parents | 153cf820a975 |
children | e7c52923f122 |
files | doc/v2_planning/use_cases.txt |
diffstat | 1 files changed, 3 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/doc/v2_planning/use_cases.txt Mon Sep 13 13:41:53 2010 -0400 +++ b/doc/v2_planning/use_cases.txt Mon Sep 13 13:42:26 2010 -0400 @@ -66,6 +66,7 @@ classification_accuracy( examples=MNIST.validation_dataset, function=as_classifier('learner_obj'))), + step_fn = vm_lambda(('learner_obj',), sgd_step_fn( parameters = vm_getattr('learner_obj', 'params'), @@ -113,7 +114,7 @@ initial_model=alloc_model('param1', 'param2'), burnin=100, score_fn = vm_lambda(('learner_obj',), - graph=classification_error( + classification_error( function=as_classifier('learner_obj'), dataset=MNIST.subset(validation_set))), step_fn = vm_lambda(('learner_obj',), @@ -145,7 +146,7 @@ extending the symbolic program, and calling the extended function. vm.call( - [pylearn.min(model.weights) for model in trained_models], + [pylearn.min(pylearn_getattr(model, 'weights')) for model in trained_models], param1=1, param2=2) If this is run after the previous calls: