Mercurial > pylearn
changeset 386:a474341861fa
Added a simple AA
author | Joseph Turian <turian@gmail.com> |
---|---|
date | Tue, 08 Jul 2008 02:27:00 -0400 |
parents | db28ff3fb887 |
children | dace8b9743af efb797c5efc0 |
files | simple_autoassociator.py/__init__.py simple_autoassociator.py/globals.py simple_autoassociator.py/graph.py simple_autoassociator.py/main.py simple_autoassociator.py/model.py simple_autoassociator.py/parameters.py sparse_random_autoassociator/__init__.py sparse_random_autoassociator/globals.py |
diffstat | 6 files changed, 141 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/simple_autoassociator.py/globals.py Tue Jul 08 02:27:00 2008 -0400 @@ -0,0 +1,10 @@ +""" +Global variables. +""" + +#INPUT_DIMENSION = 1000 +INPUT_DIMENSION = 10 +HIDDEN_DIMENSION = 20 +LEARNING_RATE = 0.1 +LR = LEARNING_RATE +SEED = 666
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/simple_autoassociator.py/graph.py Tue Jul 08 02:27:00 2008 -0400 @@ -0,0 +1,25 @@ +""" +Theano graph for a simple autoassociator. +@todo: Make nearly everything private. +""" + +from pylearn.nnet_ops import sigmoid, binary_crossentropy +from theano import tensor as t +from theano.tensor import dot +x = t.dvector() +w1 = t.dmatrix() +b1 = t.dvector() +w2 = t.dmatrix() +b2 = t.dvector() +h = sigmoid(dot(x, w1) + b1) +y = sigmoid(dot(h, w2) + b2) + +loss = t.sum(binary_crossentropy(y, x)) + +(gw1, gb1, gw2, gb2) = t.grad(loss, [w1, b1, w2, b2]) + +import theano.compile + +inputs = [x, w1, b1, w2, b2] +outputs = [y, loss, gw1, gb1, gw2, gb2] +trainfn = theano.compile.function(inputs, outputs)
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/simple_autoassociator.py/main.py Tue Jul 08 02:27:00 2008 -0400 @@ -0,0 +1,31 @@ +#!/usr/bin/python +""" + A simple autoassociator. + + The learned model is:: + h = sigmoid(dot(x, w1) + b1) + y = sigmoid(dot(h, w2) + b2) + + Binary xent loss. + + LIMITATIONS: + - Only does pure stochastic gradient (batchsize = 1). +""" + + +import numpy + +nonzero_instances = [] +nonzero_instances.append({1: 0.1, 5: 0.5, 9: 1}) +nonzero_instances.append({2: 0.3, 5: 0.5, 8: 0.8}) +nonzero_instances.append({1: 0.2, 2: 0.3, 5: 0.5}) + +import model +model = model.Model() + +for i in xrange(100000): + # Select an instance + instance = nonzero_instances[i % len(nonzero_instances)] + + # SGD update over instance + model.update(instance)
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/simple_autoassociator.py/model.py Tue Jul 08 02:27:00 2008 -0400 @@ -0,0 +1,46 @@ +""" +The model for an autoassociator for sparse inputs, using Ronan Collobert + Jason +Weston's sampling trick (2008). +""" + +from graph import trainfn +import parameters + +import globals +from globals import LR + +import numpy +import random +random.seed(globals.SEED) + +class Model: + def __init__(self): + self.parameters = parameters.Parameters(randomly_initialize=True) + + def update(self, instance): + """ + Update the L{Model} using one training instance. + @param instance: A dict from feature index to (non-zero) value. + @todo: Should assert that nonzero_indices and zero_indices + are correct (i.e. are truly nonzero/zero). + """ + x = numpy.zeros(globals.INPUT_DIMENSION) + for idx in instance.keys(): + x[idx] = instance[idx] + + (y, loss, gw1, gb1, gw2, gb2) = trainfn(x, self.parameters.w1, self.parameters.b1, self.parameters.w2, self.parameters.b2) + print + print "instance:", instance + print "OLD y:", y + print "OLD total loss:", loss + + # SGD update + self.parameters.w1 -= LR * gw1 + self.parameters.b1 -= LR * gb1 + self.parameters.w2 -= LR * gw2 + self.parameters.b2 -= LR * gb2 + + # Recompute the loss, to make sure it's descreasing + (y, loss, gw1, gb1, gw2, gb2) = trainfn(x, self.parameters.w1, self.parameters.b1, self.parameters.w2, self.parameters.b2) + print "NEW y:", y + print "NEW total loss:", loss
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/simple_autoassociator.py/parameters.py Tue Jul 08 02:27:00 2008 -0400 @@ -0,0 +1,28 @@ +""" +Parameters (weights) used by the L{Model}. +""" + +import numpy +import globals + +class Parameters: + """ + Parameters used by the L{Model}. + """ + def __init__(self, input_dimension=globals.INPUT_DIMENSION, hidden_dimension=globals.HIDDEN_DIMENSION, randomly_initialize=False, seed=globals.SEED): + """ + Initialize L{Model} parameters. + @param randomly_initialize: If True, then randomly initialize + according to the given seed. If False, then just use zeroes. + """ + if randomly_initialize: + numpy.random.seed(seed) + self.w1 = (numpy.random.rand(input_dimension, hidden_dimension)-0.5)/input_dimension + self.w2 = (numpy.random.rand(hidden_dimension, input_dimension)-0.5)/hidden_dimension + self.b1 = numpy.zeros(hidden_dimension) + self.b2 = numpy.zeros(input_dimension) + else: + self.w1 = numpy.zeros((input_dimension, hidden_dimension)) + self.w2 = numpy.zeros((hidden_dimension, input_dimension)) + self.b1 = numpy.zeros(hidden_dimension) + self.b2 = numpy.zeros(input_dimension)