Mercurial > pylearn
changeset 1427:a36d3a406c59
fix whitespace/indentation.
author | Frederic Bastien <nouiz@nouiz.org> |
---|---|
date | Tue, 08 Feb 2011 12:34:07 -0500 |
parents | 4988f8ea0836 |
children | 3823dbfff6cf |
files | pylearn/datasets/utlc.py |
diffstat | 1 files changed, 10 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/datasets/utlc.py Tue Feb 08 12:33:33 2011 -0500 +++ b/pylearn/datasets/utlc.py Tue Feb 08 12:34:07 2011 -0500 @@ -1,4 +1,4 @@ -""" +""" user should use the load _ndarray_dataset or load_sparse_dataset function See the file ${PYLEARN_DATA_ROOT}/UTCL/README for detail on the datasets. @@ -19,7 +19,7 @@ def load_ndarray_dataset(name, normalize=True, transfer=False, normalize_on_the_fly=False): """ Load the train,valid,test data for the dataset `name` and return it in ndarray format. - + :param normalize: If True, we normalize the train dataset before returning it :param transfer: If True also return the transfer label @@ -35,7 +35,7 @@ be able to use rita and harry with 1G per jobs. """ assert not (normalize and normalize_on_the_fly), "Can't normalize in 2 way at the same time!" - + assert name in ['avicenna','harry','rita','sylvester','ule'] common = os.path.join('UTLC','filetensor',name+'_') trname,vname,tename = [config.get_filepath_in_roots(common+subset+'.ft.gz', @@ -77,7 +77,7 @@ std = 0.69336046033925791#train.std()slow to compute train /= std valid /= std - test /= std + test /= std elif name == "rita": v = numpy.asarray(230, dtype=theano.config.floatX) train /= v @@ -94,7 +94,7 @@ def load_sparse_dataset(name, normalize=True, transfer=False): """ Load the train,valid,test data for the dataset `name` and return it in sparse format. - + :param normalize: If True, we normalize the train dataset before returning it :param transfer: If True also return the transfer label @@ -102,7 +102,7 @@ assert name in ['harry','terry','ule'] trname,vname,tename = [os.path.join(config.data_root(), 'UTLC','sparse', - name+'_'+subset+'.npy') + name+'_'+subset+'.npy') for subset in ['train','valid','test']] train = load_sparse(trname) valid = load_sparse(vname) @@ -119,7 +119,7 @@ std = 0.69336046033925791#train.std()slow to compute train = (train) / std valid = (valid) / std - test = (test) / std + test = (test) / std elif name == "terry": train = train.astype(theano.config.floatX) valid = valid.astype(theano.config.floatX) @@ -134,17 +134,17 @@ return train, valid, test, transfer else: return train, valid, test - + def load_ndarray_label(name): """ Load the train,valid,test data for the dataset `name` and return it in ndarray format. - + This is only available for the toy dataset ule. """ assert name in ['ule'] trname,vname,tename = [os.path.join(config.data_root(), 'UTLC','filetensor', - name+'_'+subset+'.ft') + name+'_'+subset+'.ft') for subset in ['trainl','validl','testl']] trainl = load_filetensor(trname) validl = load_filetensor(vname) @@ -222,4 +222,3 @@ assert scipy.sparse.issparse(valid) assert scipy.sparse.issparse(test) assert train.shape[1]==test.shape[1]==valid.shape[1] -