Mercurial > pylearn
changeset 441:a2e8de4669cd
merge
author | Pascal Lamblin <lamblinp@iro.umontreal.ca> |
---|---|
date | Thu, 21 Aug 2008 13:55:43 -0400 |
parents | 18dbc1c11647 (current diff) 45879c1ecde7 (diff) |
children | b3315b252824 |
files | |
diffstat | 4 files changed, 81 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/cost.py Thu Aug 21 13:55:16 2008 -0400 +++ b/cost.py Thu Aug 21 13:55:43 2008 -0400 @@ -1,5 +1,8 @@ """ Cost functions. + +@note: All of these functions return one cost per example. So it is your +job to perform a tensor.sum over the individual example losses. """ import theano.tensor as T @@ -8,4 +11,4 @@ return T.mean(T.sqr(target - output), axis) def cross_entropy(target, output, axis=1): - return -T.mean(target * T.log2(output) + (1 - target) * T.log2(1 - output), axis=axis) + return -T.mean(target * T.log(output) + (1 - target) * T.log(1 - output), axis=axis)
--- a/examples/linear_classifier.py Thu Aug 21 13:55:16 2008 -0400 +++ b/examples/linear_classifier.py Thu Aug 21 13:55:43 2008 -0400 @@ -5,10 +5,10 @@ linear_classifier.py Simple script that creates a linear_classifier, and -learns the paramters using backpropagation. +learns the parameters using backpropagation. This is to illustrate how to use theano/pylearn. -Anyone that knows how to make this script simpler/clearer is welcomed to +Anyone who knows how to make this script simpler/clearer is welcome to make the modifications. """
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/image_tools.py Thu Aug 21 13:55:43 2008 -0400 @@ -0,0 +1,39 @@ + +import numpy + + +def make_weights_image(mat, xres, yres, i, j, nrow, ncol): + """ + Displays the filters implemented by a weight matrix. + + Each filter corresponds to a row of mat and will be represented + by a xres*yres image. + + Units from i to j will be included in the picture. + + The picture will have nrow rows of filters and ncol columns + of filters. Unused spots for filters will be filled with zeros. + + The return value is a matrix suitable for display with + matplotlib's imshow. + """ + + assert j > i + n = j - i + result = numpy.zeros((ncol * xres, nrow * yres)) + submat = mat[i:j] + for k, row in enumerate(submat): + x = (k % ncol)*xres + y = (k / ncol)*yres + entry = row.reshape((xres, yres)) + lmin, lmax = numpy.min(entry), numpy.max(entry) + ldiff = lmax - lmin + #entry = (entry - lmin) / ldiff + result[x:x + xres, y:y + yres] = entry + return result.T + + + + + +
--- a/make_test_datasets.py Thu Aug 21 13:55:16 2008 -0400 +++ b/make_test_datasets.py Thu Aug 21 13:55:43 2008 -0400 @@ -1,4 +1,4 @@ -from pylearn.dataset import ArrayDataSet +import dataset from shapeset.dset import Polygons from linear_regression import linear_predictor from kernel_regression import kernel_predictor @@ -9,7 +9,8 @@ to test different learning algorithms. """ -def make_triangles_rectangles_datasets(n_examples=600,train_frac=0.5,image_size=(10,10)): + +def make_triangles_rectangles_online_dataset(image_size=(10,10)): """ Make a binary classification dataset to discriminate triangle images from rectangle images. """ @@ -19,18 +20,47 @@ n=len(n_vertices) targets = ndarray((n,1),dtype='float64') for i in xrange(n): - targets[i,0] = array([0. if vertices[i]==3 else 1.],dtype='float64') + targets[i,0] = array([0. if n_vertices[i]==3 else 1.],dtype='float64') return images.reshape(len(images),images[0].size).astype('float64'),targets - return dataset.CachedDataSet(dataset.ApplyFunctionDataSet(dset("image","nvert"),mapf,["input","target"]),True) + return dataset.ApplyFunctionDataSet(dset("image","nvert"),mapf,["input","target"]) + + p=Polygons(image_size,[3,4],fg_min=1./255,fg_max=1./255,rot_max=1.,scale_min=0.35,scale_max=0.9,pos_min=0.1, pos_max=0.9) + trainset=convert_dataset(p) + return trainset + + +def make_triangles_rectangles_dataset(n_examples=600,image_size=(10,10), cache = True): + """ + Make a binary classification dataset to discriminate triangle images from rectangle images. + """ + def convert_dataset(dset): + # convert the n_vert==3 into target==0 and n_vert==4 into target==1 + def mapf(images,n_vertices): + n=len(n_vertices) + targets = ndarray((n,1),dtype='float64') + for i in xrange(n): + targets[i,0] = array([0. if n_vertices[i]==3 else 1.],dtype='float64') + return images.reshape(len(images),images[0].size).astype('float64'),targets + return dataset.CachedDataSet(dataset.ApplyFunctionDataSet(dset("image","nvert"),mapf,["input","target"]),cache) p=Polygons(image_size,[3,4],fg_min=1./255,fg_max=1./255,rot_max=1.,scale_min=0.35,scale_max=0.9,pos_min=0.1, pos_max=0.9) data = p.subset[0:n_examples] - save_polygon_data(data,"shapes") - n_train=int(n_examples*train_frac) + trainset=convert_dataset(data.subset[0:n_examples]) + return trainset + + +def make_triangles_rectangles_datasets(n_examples=600,train_frac=0.5,image_size=(10,10), cache = True): + """ + Make two binary classification datasets to discriminate triangle images from rectangle images. + The first one is the training set, the second is the test set. + """ + data = make_triangles_rectangles_dataset(n_examples=n_examples,image_size=image_size, cache = cache) + n_train = int(n_examples*train_frac) trainset=convert_dataset(data.subset[0:n_train]) testset=convert_dataset(data.subset[n_train:n_examples]) return trainset,testset + def make_artificial_datasets_from_function(n_inputs=1, n_targets=1, n_examples=20,