Mercurial > pylearn
changeset 1173:a0f178bc9052
changes during the meeting
author | pascanur |
---|---|
date | Fri, 17 Sep 2010 16:12:33 -0400 |
parents | 3c2d7c5f0cf7 |
children | fe6c25eb1e37 |
files | doc/v2_planning/API_coding_style.txt doc/v2_planning/coding_style.txt doc/v2_planning/plugin_RP.py |
diffstat | 3 files changed, 11 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/doc/v2_planning/API_coding_style.txt Fri Sep 17 12:02:14 2010 -0400 +++ b/doc/v2_planning/API_coding_style.txt Fri Sep 17 16:12:33 2010 -0400 @@ -26,12 +26,12 @@ The four main documents describing our Python coding guidelines are: * `PEP 8 -- Style Guide for Python Code <http://www.python.org/dev/peps/pep-0008>`_ + * `Google Python Style Guide + <http://google-styleguide.googlecode.com/svn/trunk/pyguide.html>`_ * `PEP 257 -- Docstring Conventions <http://www.python.org/dev/peps/pep-0257>`_ * `Numpy Docstring Standard <http://projects.scipy.org/numpy/wiki/CodingStyleGuidelines#docstring-standard>`_ - * `Google Python Style Guide - <http://google-styleguide.googlecode.com/svn/trunk/pyguide.html>`_ However, there are a few points mentioned in those documents that we decided @@ -45,7 +45,8 @@ .. code-block:: python # Good. - """This is a multi-line docstring. + """ + This is a multi-line docstring. Which means it has more than one line. """ @@ -148,6 +149,7 @@ if (cond_1 and cond_2 and cond_3): + ... # Bad. if cond_1 and \
--- a/doc/v2_planning/coding_style.txt Fri Sep 17 12:02:14 2010 -0400 +++ b/doc/v2_planning/coding_style.txt Fri Sep 17 16:12:33 2010 -0400 @@ -54,7 +54,7 @@ - You cannot use a **kw argument in your constructor for your own selfish purpose. - I have no clue whether one could do this with multiple inheritance. - - More? + - Pb if super class adds an argument that has same name as a child class. Question: Should we encourage this in Pylearn? JB: +0.5
--- a/doc/v2_planning/plugin_RP.py Fri Sep 17 12:02:14 2010 -0400 +++ b/doc/v2_planning/plugin_RP.py Fri Sep 17 16:12:33 2010 -0400 @@ -105,9 +105,12 @@ cPickle.dump(model.parameters(), open('best_params.pkl','wb')) -# Create the dependency graph describing what does what +# Create the dependency graph describing what does what +train_data.act( on = sched.begin(), when = once() ) +train_data.act( on = Event('batch'), +train_data.act( on = train_model.done(), when = always()) train_model.act(on = train_data.batch(), when = always()) -validate_model.act(on = train_model.done(), when = every(n=10000)) +validate_model.act(on = train_model.done(), when = every(n=10000)) early_stopper.act(on = validate_model.error(), when = always()) print_error.act( on = train_model.error(), when = always() ) print_error.act( on = train_data.eod(), when = always() )