Mercurial > pylearn
changeset 1199:98954d8cb92d
v2planning - modifs to plugin_JB
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Mon, 20 Sep 2010 02:56:11 -0400 |
parents | 1387771296a8 |
children | acfd5e747a75 |
files | doc/v2_planning/plugin_JB.py |
diffstat | 1 files changed, 60 insertions(+), 45 deletions(-) [+] |
line wrap: on
line diff
--- a/doc/v2_planning/plugin_JB.py Mon Sep 20 02:34:23 2010 -0400 +++ b/doc/v2_planning/plugin_JB.py Mon Sep 20 02:56:11 2010 -0400 @@ -95,7 +95,6 @@ def step(self): pass - class BUFFER_REPEAT(ELEMENT): """ Accumulate a number of return values into one list / array. @@ -160,7 +159,7 @@ else: return self.fn(*self.args, **self.kwargs) def __getstate__(self): - rval = self.__dict__ + rval = dict(self.__dict__) if type(self.fn) is type(self.step): #instancemethod fn = rval.pop('fn') rval['i fn'] = fn.im_func, fn.im_self, fn.im_class @@ -170,8 +169,12 @@ dct['fn'] = type(self.step)(*dct.pop('i fn')) self.__dict__.update(dct) -def FILT(*args, **kwargs): - return CALL(use_start_arg=True, *args, **kwargs) +def FILT(fn, **kwargs): + """ + Return a CALL object that uses the return value from the previous CALL as the first and + only positional argument. + """ + return CALL(fn, use_start_arg=True, **kwargs) def CHOOSE(which, options): """ @@ -284,6 +287,16 @@ def store_scores(self, scores): self.scores[self.k] = scores + def prog(self, clear, train, test): + return REPEAT(self.K, [ + CALL(self.next_fold), + clear, + train, + CALL(self.init_test), + BUFFER_REPEAT(self.test_size(), + SEQ([ CALL(self.next_test), test])), + FILT(self.store_scores) ]) + class PCA_Analysis(object): def __init__(self): self.clear() @@ -316,14 +329,9 @@ def no_op(*args, **kwargs): pass -class cd1_update(object): - def __init__(self, layer, lr): - self.layer = layer - self.lr = lr - - def __call__(self, X): - # update self.layer from observation X - self.layer.w += X.mean() * self.lr #TODO: not exactly correct math +def cd1_update(X, layer, lr): + # update self.layer from observation X + layer.w += X.mean() * lr #TODO: not exactly correct math! def simple_main(): @@ -346,53 +354,60 @@ layer2 = Layer(w=3) kf = KFold(dataset, K=10) + pca_batchsize=1000 + cd_batchsize = 5 + n_cd_updates_layer1 = 10 + n_cd_updates_layer2 = 10 + # create algorithm train_pca = SEQ([ - BUFFER_REPEAT(1000, CALL(kf.next)), + BUFFER_REPEAT(pca_batchsize, CALL(kf.next)), FILT(pca.analyze)]) - train_layer1 = REPEAT(10, [ - BUFFER_REPEAT(10, CALL(kf.next)), + train_layer1 = REPEAT(n_cd_updates_layer1, [ + BUFFER_REPEAT(cd_batchsize, CALL(kf.next)), FILT(pca.filt), - FILT(cd1_update(layer1, lr=.01))]) + FILT(cd1_update, layer=layer1, lr=.01)]) - train_layer2 = REPEAT(10, [ - BUFFER_REPEAT(10, CALL(kf.next)), + train_layer2 = REPEAT(n_cd_updates_layer2, [ + BUFFER_REPEAT(cd_batchsize, CALL(kf.next)), FILT(pca.filt), FILT(layer1.filt), - FILT(cd1_update(layer2, lr=.01))]) - - train_prog = SEQ([ - train_pca, - WEAVE([ - train_layer1, - LOOP(CALL(print_obj_attr, layer1, 'w'))]), - train_layer2, - ]) + FILT(cd1_update, layer=layer2, lr=.01)]) - kfold_prog = REPEAT(10, [ - CALL(kf.next_fold), - CALL(pca.clear), - CALL(layer1.clear), - CALL(layer2.clear), - train_prog, - CALL(kf.init_test), - BUFFER_REPEAT(kf.test_size(), - SEQ([ - CALL(kf.next_test), + kfold_prog = kf.prog( + clear = SEQ([ # FRAGMENT 1: this bit is the reset/clear stage + CALL(pca.clear), + CALL(layer1.clear), + CALL(layer2.clear), + ]), + train = SEQ([ + train_pca, + WEAVE([ # Silly example of how to do debugging / loggin with WEAVE + train_layer1, + LOOP(CALL(print_obj_attr, layer1, 'w'))]), + train_layer2, + ]), + test=SEQ([ FILT(pca.filt), # may want to allow this SEQ to be FILT(layer1.filt), # optimized into a shorter one that - FILT(layer2.filt), - FILT(numpy.mean)])), # chains together theano graphs - FILT(kf.store_scores), - ]) + FILT(layer2.filt), # compiles these calls together with + FILT(numpy.mean)])) # Theano + + pkg1 = dict(prog=kfold_prog, kf=kf) + pkg2 = copy.deepcopy(pkg1) # programs can be copied - vm = VirtualMachine(kfold_prog) + try: + pkg3 = cPickle.loads(cPickle.dumps(pkg1)) + except: + print >> sys.stderr, "pickling doesnt work, but it can be fixed I think" - #vm2 = copy.deepcopy(vm) - vm.run(n_steps=200000) - print kf.scores + pkg = pkg2 + + # running a program updates the variables in its package, but not the other package + VirtualMachine(pkg['prog']).run() + print pkg['kf'].scores if __name__ == '__main__':