Mercurial > pylearn
changeset 1422:8c209c847087
adding delta-bar-delta optimization updates to gd module
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Fri, 04 Feb 2011 16:07:27 -0500 |
parents | 3dee72c3055d |
children | ea5d27727869 |
files | pylearn/gd/dbd.py pylearn/gd/tests/test_dbd.py |
diffstat | 2 files changed, 89 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pylearn/gd/dbd.py Fri Feb 04 16:07:27 2011 -0500 @@ -0,0 +1,66 @@ +""" +Delta-Bar-Delta gradient descent algorithm. + +Reference: TODO + +Math: TODO +""" +import sys +import numpy +from theano import shared, tensor + +def dbd_updates(params, grads, stepsizes, cost, + global_step_inc=1.1, + global_step_dec=0.5, + multiplier_min=.1, + multiplier_max=10, + multiplier_inc=.05, #additive + multiplier_dec=.95, #multiplicative + ): + """ + Parameter description TODO. + + Return value TODO. + """ + dtype = cost.dtype + if grads is None: + grads = tensor.grad(cost, params) + + paramvals = [p.get_value(borrow=False) for p in params] + + last_params = [shared(numpy.asarray(pv)) for pv in paramvals] + last_grads = [shared(numpy.zeros_like(pv)) for pv in paramvals] + multipliers = [shared(numpy.ones_like(pv)) for pv in paramvals] + global_stepsize = shared(numpy.asarray(1.0, dtype=dtype)) + + #DebugMode complains by default about inf + last_cost = shared(numpy.asarray(sys.maxint, dtype=dtype)) + + ups = dict() + cost_improvement = (cost < last_cost) + ups[last_cost] = tensor.switch(cost_improvement, cost, last_cost) + ups[global_stepsize] = new_gs = tensor.switch(cost_improvement, + global_step_inc*global_stepsize, + global_step_dec*global_stepsize,) + for lp, p in zip(last_params, params): + ups[lp] = tensor.switch(cost_improvement, p, lp) + for lg, g in zip(last_grads, grads): + ups[lg] = tensor.switch(cost_improvement, g, lg) + for m, lg, g in zip(multipliers, last_grads, grads): + ups[m] = tensor.switch(cost_improvement, + tensor.clip( + tensor.switch(g*lg >= 0, + m+multiplier_inc, + m*multiplier_dec), + multiplier_min, + multiplier_max), + m) + for lp, p, lg, g, stepsize, m in zip( + last_params, params, + last_grads, grads, + stepsizes, multipliers): + ups[p] = tensor.switch(cost_improvement, + p - new_gs*ups[m]*stepsize*g, + lp - new_gs*ups[m]*stepsize*lg) + return ups +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pylearn/gd/tests/test_dbd.py Fri Feb 04 16:07:27 2011 -0500 @@ -0,0 +1,23 @@ +import theano +from theano.compile.debugmode import DebugMode +from pylearn.gd import dbd + +mode = theano.compile.mode.get_default_mode() +if isinstance(mode,DebugMode): + mode = 'FAST_RUN' + +def test_dbd_basic(): + + x = theano.shared(5.0) + y = theano.shared(3.0) + + cost = (1.0 - x * y)**2 + ups = dbd.dbd_updates([x,y], grads=None, stepsizes=[.01,.01], + cost = cost) + fn = theano.function([], cost, updates=ups) + c_i = fn() + assert c_i > 20 + for i in xrange(20): + c_i = fn() + assert c_i < 1.0e-10 +