Mercurial > pylearn
changeset 998:8ba8b08e0442
added the image_patches dataset used in RanzatoHinton2010
modified mcRBM to use it.
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Tue, 24 Aug 2010 16:51:53 -0400 |
parents | 71b0132b694a |
children | c6d08a760960 |
files | pylearn/algorithms/mcRBM.py pylearn/dataset_ops/image_patches.py pylearn/datasets/image_patches.py |
diffstat | 3 files changed, 85 insertions(+), 59 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/algorithms/mcRBM.py Tue Aug 24 16:00:08 2010 -0400 +++ b/pylearn/algorithms/mcRBM.py Tue Aug 24 16:51:53 2010 -0400 @@ -206,6 +206,7 @@ #TODO: This should be in the datasets folder import pylearn.datasets.config +import pylearn.dataset_ops.image_patches from pylearn.dataset_ops.protocol import TensorFnDataset from pylearn.dataset_ops.memo import memo import pylearn @@ -223,15 +224,6 @@ updates = [(p, p - plr * gp) for (plr, p, gp) in zip(lr, params, grads)] return updates -@memo -def load_mcRBM_demo_patches(): - d = scipy.io.loadmat(os.path.join(pylearn.datasets.config.data_root(),'image_patches', 'mcRBM', 'training_colorpatches_16x16_demo.mat')) - totnumcases = d["whitendata"].shape[0] - #d = d["whitendata"][0:np.floor(totnumcases/batch_size)*batch_size,:].copy() - d = d["whitendata"].copy() - return d - - def hidden_cov_units_preactivation_given_v(rbm, v, small=0.5): """Return argument to the sigmoid that would give mean of covariance hid units @@ -398,15 +390,13 @@ if __name__ == '__main__': - print >> sys.stderr, "TODO: use P matrix (aka FH matrix)" - dataset='MAR' if dataset == 'MAR': - R,C= 21,5 + n_vis=105 n_patches=10240 - demodata = scipy.io.loadmat(os.path.join(pylearn.datasets.config.data_root(),'image_patches', 'mcRBM', 'training_colorpatches_16x16_demo.mat')) else: R,C= 16,16 # the size of image patches + n_vis=R*C n_patches=100000 n_train_iters=5000 @@ -423,53 +413,29 @@ s_lr = TT.scalar() s_l1_penalty=TT.scalar() n_K=256 - n_F=256 n_J=100 - rbm = MeanCovRBM.new_from_dims(n_I=R*C, n_K=n_K, n_J=n_J) + rbm = MeanCovRBM.new_from_dims(n_I=n_vis, n_K=n_K, n_J=n_J) - sampler = sampler(rbm, n_particles=batchsize) + smplr = sampler(rbm, n_particles=batchsize) def l2(X): return numpy.sqrt((X**2).sum()) - def tile(X, fname): - if dataset == 'MAR': - X = np.dot(X, demodata['invpcatransf'].T) - R=16 - C=16 - #X = X.reshape((X.shape[0], 3, 16, 16)).transpose([0,2,3,1]).copy() - X = (X[:,:256], X[:,256:512], X[:,512:], None) - _img = image_tiling.tile_raster_images(X, - img_shape=(R,C), - min_dynamic_range=1e-2) - image_tiling.save_tiled_raster_images(_img, fname) - #print "Burning in..." - #for burnin in xrange(n_burnin_steps): - #sampler.simulate() - - if 0: - print "Just SAMPLING..." - for jj in xrange(n_burnin_steps): - if 0 == jj % 100: - tile(sampler.positions[0].value, "sampler_%06i.png"%jj) - tile(numpy.random.randn(100, 105), "random_%06i.png"%jj) - print "burning in... ", jj - sys.stdout.flush() - sampler.simulate() - - sys.exit() + if dataset == 'MAR': + tile = pylearn.dataset_ops.image_patches.save_filters_of_ranzato_hinton_2010 + else: + def tile(X, fname): + _img = image_tiling.tile_raster_images(X, + img_shape=(R,C), + min_dynamic_range=1e-2) + image_tiling.save_tiled_raster_images(_img, fname) batch_idx = TT.iscalar() if dataset == 'MAR': - op = TensorFnDataset(floatX, - bcast=(False,), - fn=load_mcRBM_demo_patches, - single_shape=(105,)) - train_batch = op((batch_idx * batchsize + np.arange(batchsize))%n_patches) + train_batch = pylearn.dataset_ops.image_patches.ranzato_hinton_2010_op(batch_idx * batchsize + np.arange(batchsize)) else: - from pylearn.dataset_ops import image_patches - train_batch = image_patches.image_patches( + train_batch = pylearn.dataset_ops.image_patches.image_patches( s_idx = (batch_idx * batchsize + np.arange(batchsize)), dims = (n_patches,R,C), center=True, @@ -481,14 +447,13 @@ grads = contrastive_gradient(rbm, pos_v=train_batch, - neg_v=sampler.positions[0], + neg_v=smplr.positions[0], U_l1_penalty=s_l1_penalty, W_l1_penalty=s_l1_penalty) sgd_ups = sgd_updates( rbm.params, grads, lr=[2*s_lr, .2*s_lr, .02*s_lr, .1*s_lr, .02*s_lr ]) - learn_fn = function([batch_idx, s_lr, s_l1_penalty], outputs=[ grads[0].norm(2), @@ -496,7 +461,6 @@ (sgd_ups[1][1] - sgd_ups[1][0]).norm(2), ], updates = sgd_ups) - theano.printing.pydotprint(function([batch_idx, s_l1_penalty], grads[0]), 'grads0.png') print "Learning..." normVF=1 @@ -512,7 +476,7 @@ if print_jj: tile(imgs_fn(jj), "imgs_%06i.png"%jj) - tile(sampler.positions[0].value, "sample_%06i.png"%jj) + tile(smplr.positions[0].value, "sample_%06i.png"%jj) tile(rbm.U.value.T, "U_%06i.png"%jj) tile(rbm.W.value.T, "W_%06i.png"%jj) @@ -527,12 +491,12 @@ print 'b min max', rbm.b.value.min(), rbm.b.value.max(), print 'c min max', rbm.c.value.min(), rbm.c.value.max() - print 'parts min', sampler.positions[0].value.min(), - print 'max',sampler.positions[0].value.max(), - print 'HMC step', sampler.stepsize, - print 'arate', sampler.avg_acceptance_rate + print 'parts min', smplr.positions[0].value.min(), + print 'max',smplr.positions[0].value.max(), + print 'HMC step', smplr.stepsize, + print 'arate', smplr.avg_acceptance_rate - sampler.simulate() + smplr.simulate() l2_of_Ugrad = learn_fn(jj, lr/max(1, jj/(20*epoch_size/batchsize)), @@ -557,7 +521,7 @@ # But the matrix itself is re-scaled to have an arbitrary abslute size. U = rbm.U.value U_norms = np.sqrt((U*U).sum(axis=0)) - assert len(U_norms) == n_F + assert len(U_norms) == n_K normVF = .95 * normVF + .05 * np.mean(U_norms) rbm.U.value = rbm.U.value * normVF/U_norms
--- a/pylearn/dataset_ops/image_patches.py Tue Aug 24 16:00:08 2010 -0400 +++ b/pylearn/dataset_ops/image_patches.py Tue Aug 24 16:51:53 2010 -0400 @@ -2,12 +2,16 @@ import theano from pylearn.datasets.image_patches import ( + data_root, olshausen_field_1996_whitened_images, extract_random_patches) from .protocol import TensorFnDataset # protocol.py __init__.py from .memo import memo +import scipy.io +from pylearn.io import image_tiling + @memo def get_dataset(N,R,C,dtype,center,unitvar): seed=98234 @@ -48,3 +52,60 @@ return x + + +@memo +def ranzato_hinton_2010(path=None): + if path is None: + path = os.path.join(data_root(), 'image_patches', 'mcRBM', + 'training_colorpatches_16x16_demo.mat') + dct = scipy.io.loadmat(path) + return dct +def ranzato_hinton_2010_whitened_patches(path=None): + """Return the pca of the data, which is 10240 x 105 + """ + dct = ranzato_hinton_2010(path) + return dct['whitendata'].astype('float32') + +def undo_pca_filters_of_ranzato_hinton_2010(X, path=None): + """Return tuple (R,G,B,None) of matrices for matrix `X` of filters (one per row) + + Return value can be passed to `image_tiling.tile_raster_images`. + """ + dct = ranzato_hinton_2010(path) + X = numpy.dot(X, dct['invpcatransf'].T) + return (X[:,:256], X[:,256:512], X[:,512:], None) + +def save_filters_of_ranzato_hinton_2010(X, fname, min_dynamic_range=1e-3, data_path=None): + _img = image_tiling.tile_raster_images( + undo_pca_filters_of_ranzato_hinton_2010(X, path=data_path), + img_shape=(16,16), + min_dynamic_range=min_dynamic_range) + image_tiling.save_tiled_raster_images(_img, fname) + +def ranzato_hinton_2010_op(s_idx, + split='train', + dtype=theano.config.floatX, rasterized=True, + center=True, + unitvar=True): + N = 10240 + + if split != 'train': + raise NotImplementedError('train/test/valid splits for randomly sampled image patches?') + + if not rasterized: + # the data is provided as PCA-sphered, so rasterizing does not make sense + # TODO: add a param to enable/disable 'PCA', and if disabled, then consider + # rasterizing or not + raise NotImplementedError('only pca data is provided') + + if dtype != 'float32': + raise NotImplementedError('dtype not float32') + + op = TensorFnDataset(dtype, + bcast=(False,), + fn=ranzato_hinton_2010_whitened_patches, + single_shape=(105,)) + x = op(s_idx%N) + return x +