Mercurial > pylearn
changeset 1404:89017617ab36
normalize 5 of the UTLC datasets.
author | Frederic Bastien <nouiz@nouiz.org> |
---|---|
date | Mon, 24 Jan 2011 13:18:43 -0500 |
parents | 6ade5b39b773 |
children | f9e4d71aa353 6003f733a994 |
files | pylearn/datasets/utlc.py |
diffstat | 1 files changed, 81 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/datasets/utlc.py Fri Jan 21 20:40:57 2011 -0500 +++ b/pylearn/datasets/utlc.py Mon Jan 24 13:18:43 2011 -0500 @@ -1,17 +1,22 @@ """ user should use the load _ndarray_dataset or load_sparse_dataset function -See the file PYLEARN_DB_PATH/UTCL/README for detail on the datasets. -See the end of this file for an example on how to load the file. + +See the file ${PYLEARN_DATA_ROOT}/UTCL/README for detail on the datasets. + +See the end of this file for an example. """ import cPickle import gzip import os +import numpy +import theano + import pylearn.io.filetensor as ft import config -def load_ndarray_dataset(name): +def load_ndarray_dataset(name, normalize=True): assert name in ['avicenna','harry','rita','sylvester','ule'] trname,vname,tename = [os.path.join(config.data_root(), 'UTLC','filetensor', @@ -20,9 +25,43 @@ train = load_filetensor(trname) valid = load_filetensor(vname) test = load_filetensor(tename) + if normalize: + if name == "ule": + train = numpy.asarray(train, theano.config.floatX) / 255 + valid = numpy.asarray(valid, theano.config.floatX) / 255 + test = numpy.asarray(test, theano.config.floatX) / 255 + elif name in ["avicenna", "sylvester"]: + train = numpy.asarray(train, theano.config.floatX) + valid = numpy.asarray(valid, theano.config.floatX) + test = numpy.asarray(test, theano.config.floatX) + mean = train.mean() + std = train.std() + train = (train - mean) / std + valid = (valid - mean) / std + test = (test - mean) / std + elif name == "harry": + #force float32 as otherwise too big to keep in memory completly + train = numpy.asarray(train, "float32") + valid = numpy.asarray(valid, "float32") + test = numpy.asarray(test, "float32") + std = 0.69336046033925791#train.std()slow to compute + train = (train) / std + valid = (valid) / std + test = (test) / std + elif name == "rita": + #force float32 as otherwise too big to keep in memory completly + train = numpy.asarray(train, "float32") + valid = numpy.asarray(valid, "float32") + test = numpy.asarray(test, "float32") + max = train.max() + train = (train) / max + valid = (valid) / max + test = (test) / max + else: + raise Exception("This dataset don't have its normalization defined") return train, valid, test -def load_sparse_dataset(name): +def load_sparse_dataset(name, normalize=True): assert name in ['harry','terry','ule'] trname,vname,tename = [os.path.join(config.data_root(), 'UTLC','sparse', @@ -31,6 +70,30 @@ train = load_sparse(trname) valid = load_sparse(vname) test = load_sparse(tename) + if normalize: + if name == "ule": + train = train.astype(theano.config.floatX) / 255 + valid = valid.astype(theano.config.floatX) / 255 + test = test.astype(theano.config.floatX) / 255 + elif name == "harry": + train = train.astype(theano.config.floatX) + valid = valid.astype(theano.config.floatX) + test = test.astype(theano.config.floatX) + std = 0.69336046033925791#train.std()slow to compute + train = (train) / std + valid = (valid) / std + test = (test) / std + #elif name == "terry": + # import pdb;pdb.set_trace() + # train = train.astype(theano.config.floatX) + # valid = valid.astype(theano.config.floatX) + # test = test.astype(theano.config.floatX) + #max = max(train.data.max(),0) + #train = (train) / max + #valid = (valid) / max + #test = (test) / max + else: + raise Exception("This dataset don't have its normalization defined") return train, valid, test def load_filetensor(fname): @@ -68,18 +131,28 @@ import numpy import scipy.sparse for name in ['avicenna','harry','rita','sylvester','ule']: - train, valid, test = load_ndarray_dataset(name) + train, valid, test = load_ndarray_dataset(name, normalize=True) + print name,"dtype, max, min, mean, std" + print train.dtype, train.max(), train.min(), train.mean(), train.std() assert isinstance(train, numpy.ndarray) assert isinstance(valid, numpy.ndarray) assert isinstance(test, numpy.ndarray) - import pdb;pdb.set_trace() assert train.shape[1]==test.shape[1]==valid.shape[1] - for name in ['harry','terry','ule']: + for name in ['harry','ule','ule']: train, valid, test = load_sparse_dataset(name) + nb_elem = numpy.prod(train.shape) + mi = train.data.min() + ma = train.data.max() + mi = min(0, mi) + ma = max(0, ma) + su = train.data.sum() + mean = float(su)/nb_elem + print name,"dtype, max, min, mean, nb non-zero, nb element, %sparse" + print train.dtype, ma, mi, mean, train.nnz, nb_elem, (nb_elem-float(train.nnz))/nb_elem + assert scipy.sparse.issparse(train) assert scipy.sparse.issparse(valid) assert scipy.sparse.issparse(test) - import pdb;pdb.set_trace() assert train.shape[1]==test.shape[1]==valid.shape[1]