Mercurial > pylearn
changeset 690:7d8bb6d087bc
additions to datasets/tagatune
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Thu, 14 May 2009 16:59:20 -0400 |
parents | 651eb6506d91 |
children | e69249897f89 |
files | pylearn/datasets/tagatune.py |
diffstat | 1 files changed, 43 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/datasets/tagatune.py Thu May 14 16:58:14 2009 -0400 +++ b/pylearn/datasets/tagatune.py Thu May 14 16:59:20 2009 -0400 @@ -9,7 +9,9 @@ import os import numpy -from config import data_root +import theano + +from .config import data_root def read_annotations_final(path): """Return a parsed (column-wise) representation of the tagatune/annotations_final.csv file @@ -35,7 +37,7 @@ #strip the leading and trailing '"' symbol from each token column_values = [tok[1:-1] for tok in line[:-2].split('\t')] assert len(column_values) == 190 - clip_ids.append(column_values[0]) + clip_ids.append(int(column_values[0])) mp3_paths.append(column_values[-1]) # assert we didn't chop off too many chars assert column_values[-1].endswith('.mp3') @@ -43,7 +45,8 @@ # assert that the data is binary assert all(c in '01' for c in attributes_this_line) - attributes.append(attributes_this_line) + attributes.append(numpy.asarray([int(c) for c in attributes_this_line], + dtype='int8')) # assert that we read all the lines of the file assert len(clip_ids) == 25863 @@ -53,10 +56,42 @@ attribute_names = column_names[1:-1] #all but clip_id and mp3_path return clip_ids, attributes, mp3_paths, attribute_names +def cached_read_annotations_final(path): + if not hasattr(cached_read_annotations_final, 'rval'): + cached_read_annotations_final.rval = {} + if not path in cached_read_annotations_final.rval: + cached_read_annotations_final.rval[path] = read_annotations_final(path) + return cached_read_annotations_final.rval[path] + def test_read_annotations_final(): - return read_annotations_final(data_root() +'/tagatune/annotations_final.csv') + return read_annotations_final(data_root() + '/tagatune/annotations_final.csv') -if __name__ == '__main__': - print 'starting' - test_read_annotations_final() - print 'done' +class TagatuneExample(theano.Op): + """ + input - index into tagatune database (not clip_id) + output - clip_id, attributes, path to clip's mp3 file + """ + def __init__(self, music_dbs='/data/gamme/data/music_dbs'): + self.music_dbs = music_dbs + annotations_path = music_dbs + '/tagatune/annotations_final.csv' + self.clip_ids, self.attributes, self.mp3_paths, self.attribute_names =\ + cached_read_annotations_final(annotations_path) + + n_examples = property(lambda self: len(self.clip_ids)) + + def make_node(self, idx): + _idx = theano.tensor.as_tensor_variable(idx, ndim=0) + return theano.Apply(self, + [_idx], + [theano.tensor.lscalar('clip_id'), + theano.tensor.bvector('clip_attributes'), + theano.generic('clip_path')]) + def perform(self, node, (idx,), out_storage): + out_storage[0][0] = self.clip_ids[idx] + out_storage[1][0] = self.attributes[idx] + out_storage[2][0] = self.music_dbs + '/tagatune/clips/mp3/' + self.mp3_paths[idx] + + def grad(self, inputs, output): + return [None for i in inputs] + +#tagatune_example = TagatuneExample() #requires reading a big data file