Mercurial > pylearn
changeset 1335:7c51c0355d86
removed sandbox code from test_mcRBM
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Mon, 18 Oct 2010 15:01:00 -0400 |
parents | 6fd2610c1706 |
children | 09ad2a4f663c |
files | pylearn/algorithms/tests/test_mcRBM.py |
diffstat | 1 files changed, 0 insertions(+), 107 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/algorithms/tests/test_mcRBM.py Mon Oct 18 14:58:52 2010 -0400 +++ b/pylearn/algorithms/tests/test_mcRBM.py Mon Oct 18 15:01:00 2010 -0400 @@ -520,110 +520,3 @@ return checkpoint run_classif_experiment(checkpoint=checkpoint) - - -if 0: # TEST IDEA OUT HERE - - - class doc_db(dict): - # A key->document dictionary. - # A "document" is itself a dictionary. - - # A "document" can be a small or large object, but it cannot be partially retrieved. - - # This simple data structure is used in pylearn to cache intermediate reults between - # several process invocations. - - class UNSPECIFIED(object): pass - - class CtrlObj(object): - - def get(self, key, default_val=UNSPECIFIED, copy=True): - # Default to return a COPY because a set() is required to make a change persistent. - # Inplace changes that the CtrlObj does not know about (via set) will not be saved. - pass - - def get_key(self, val): - """Return the key that retrieved `val`. - - This is useful for specifying cache keys for unhashable (e.g. numpy) objects that - happen to be stored in the db. - """ - # if - # lookup whether val is an obj - pass - def set(self, key, val): - pass - def delete(self, key): - pass - def checkpoint(self): - pass - - @staticmethod - def cache_pickle(pass_ctrl=False): - def decorator(f): - # cache rval using pickle mechanism - def rval(*args, **kwargs): - pass - return rval - return decorator - - @staticmethod - def cache_dict(pass_ctrl=False): - def decorator(f): - # cache rval dict directly - def rval(*args, **kwargs): - pass - return rval - return decorator - - @staticmethod(f): - def cache_numpy(pass_ctrl=False, memmap_thresh=100*1000*1000): - def decorator(f): - # cache rval dict directly - def rval(*args, **kwargs): - pass - return rval - return decorator - - @CtrlObj.cache_numpy() - def get_whitened_dataset(pca_parameters): - # do computations - return None - - @CtrlObj.cache_pickle(pass_ctrl=True) - def train_mcRBM(data, lr, n_hid, ctrl): - - rbm = 45 - for i in 10000: - # do some training - rbm += 1 - ctrl.checkpoint() - return rbm - - def run_experiment(args): - - ctrl_obj = CtrlObj.factory(args) - # Could use db, or filesystem, or both, etc. - # There would be generic ones, but the experimenter should be very aware of what is being - # cached where, when, and how. This is how results are stored and retrieved after all. - # Cluster-friendly jobs should not use local files directly, but should store cached - # computations and results to such a database. - # Different jobs should avoid using the same keys in the database because coordinating - # writes is difficult, and conflicts will inevitably arise. - - raw_data = get_raw_data(ctrl=ctrl) - raw_data_key = ctrl.get_key(raw_data) - pca = get_pca(raw_data, max_energy=.05, ctrl=ctrl, - _ctrl_raw_data_key=raw_data_key) - whitened_data = get_whitened_dataset(pca_parameters, ctrl=ctrl, - _ctrl_data_key=raw_data_key) - - rbm = train_mcRBM( - data=whitened_data, - lr=0.01, - n_hid=100, - ctrl=ctrl, - _ctrl_data_key=raw_data_key - ) -