Mercurial > pylearn
changeset 372:75bab24bb2d8
Moved more logic into model.py
author | Joseph Turian <turian@gmail.com> |
---|---|
date | Mon, 07 Jul 2008 02:06:15 -0400 |
parents | 22463a194c90 |
children | 42cc94cf6c12 |
files | sparse_random_autoassociator/main.py sparse_random_autoassociator/model.py |
diffstat | 2 files changed, 49 insertions(+), 30 deletions(-) [+] |
line wrap: on
line diff
--- a/sparse_random_autoassociator/main.py Mon Jul 07 01:57:49 2008 -0400 +++ b/sparse_random_autoassociator/main.py Mon Jul 07 02:06:15 2008 -0400 @@ -25,15 +25,10 @@ - Loss is irrespective of the xnonzero magnitude. - We will always use all nonzero entries, even if the training instance is very non-sparse. - - @bug: If there are not ZERO_SAMPLE_SIZE zeroes, we will enter an - endless loop. """ -import numpy, random -import globals -random.seed(globals.SEED) +import numpy nonzero_instances = [] nonzero_instances.append({1: 0.1, 5: 0.5, 9: 1}) @@ -47,18 +42,5 @@ # Select an instance instance = nonzero_instances[i % len(nonzero_instances)] - # Get the nonzero indices - nonzero_indexes = instance.keys() - nonzero_indexes.sort() - - # Get the zero indices - # @bug: If there are not ZERO_SAMPLE_SIZE zeroes, we will enter an endless loop. - zero_indexes = [] - while len(zero_indexes) < globals.ZERO_SAMPLE_SIZE: - idx = random.randint(0, globals.INPUT_DIMENSION - 1) - if idx in nonzero_indexes or idx in zero_indexes: continue - zero_indexes.append(idx) - zero_indexes.sort() - # SGD update over instance - model.update(instance, nonzero_indexes, zero_indexes) + model.update(instance)
--- a/sparse_random_autoassociator/model.py Mon Jul 07 01:57:49 2008 -0400 +++ b/sparse_random_autoassociator/model.py Mon Jul 07 02:06:15 2008 -0400 @@ -5,33 +5,70 @@ from graph import trainfn import parameters + +import globals +from globals import LR + import numpy -from globals import LR +import random +random.seed(globals.SEED) + +def _select_indices(instance): + """ + Choose nonzero and zero indices (feature columns) of the instance. + We select B{all} nonzero indices. + We select L{globals.ZERO_SAMPLE_SIZE} zero indices randomly, + without replacement. + @bug: If there are not ZERO_SAMPLE_SIZE zeroes, we will enter + an endless loop. + @return: (nonzero_indices, zero_indices) + """ + # Get the nonzero indices + nonzero_indices = instance.keys() + nonzero_indices.sort() + + # Get the zero indices + # @bug: If there are not ZERO_SAMPLE_SIZE zeroes, we will enter an endless loop. + zero_indices = [] + while len(zero_indices) < globals.ZERO_SAMPLE_SIZE: + idx = random.randint(0, globals.INPUT_DIMENSION - 1) + if idx in nonzero_indices or idx in zero_indices: continue + zero_indices.append(idx) + zero_indices.sort() + + return (nonzero_indices, zero_indices) class Model: def __init__(self): self.parameters = parameters.Parameters(randomly_initialize=True) - def update(self, instance, nonzero_indexes, zero_indexes): - xnonzero = numpy.asarray([instance[idx] for idx in nonzero_indexes]) + def update(self, instance): + """ + Update the L{Model} using one training instance. + @param instance: A dict from feature index to (non-zero) value. + @todo: Should assert that nonzero_indices and zero_indices + are correct (i.e. are truly nonzero/zero). + """ + (nonzero_indices, zero_indices) = _select_indices(instance) + xnonzero = numpy.asarray([instance[idx] for idx in nonzero_indices]) print print "xnonzero:", xnonzero - (ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = trainfn(xnonzero, self.parameters.w1[nonzero_indexes, :], self.parameters.b1, self.parameters.w2[:, nonzero_indexes], self.parameters.w2[:, zero_indexes], self.parameters.b2[nonzero_indexes], self.parameters.b2[zero_indexes]) + (ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = trainfn(xnonzero, self.parameters.w1[nonzero_indices, :], self.parameters.b1, self.parameters.w2[:, nonzero_indices], self.parameters.w2[:, zero_indices], self.parameters.b2[nonzero_indices], self.parameters.b2[zero_indices]) print "OLD ynonzero:", ynonzero print "OLD yzero:", yzero print "OLD total loss:", loss # SGD update - self.parameters.w1[nonzero_indexes, :] -= LR * gw1nonzero + self.parameters.w1[nonzero_indices, :] -= LR * gw1nonzero self.parameters.b1 -= LR * gb1 - self.parameters.w2[:, nonzero_indexes] -= LR * gw2nonzero - self.parameters.w2[:, zero_indexes] -= LR * gw2zero - self.parameters.b2[nonzero_indexes] -= LR * gb2nonzero - self.parameters.b2[zero_indexes] -= LR * gb2zero + self.parameters.w2[:, nonzero_indices] -= LR * gw2nonzero + self.parameters.w2[:, zero_indices] -= LR * gw2zero + self.parameters.b2[nonzero_indices] -= LR * gb2nonzero + self.parameters.b2[zero_indices] -= LR * gb2zero # Recompute the loss, to make sure it's descreasing - (ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = trainfn(xnonzero, self.parameters.w1[nonzero_indexes, :], self.parameters.b1, self.parameters.w2[:, nonzero_indexes], self.parameters.w2[:, zero_indexes], self.parameters.b2[nonzero_indexes], self.parameters.b2[zero_indexes]) + (ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = trainfn(xnonzero, self.parameters.w1[nonzero_indices, :], self.parameters.b1, self.parameters.w2[:, nonzero_indices], self.parameters.w2[:, zero_indices], self.parameters.b2[nonzero_indices], self.parameters.b2[zero_indices]) print "NEW ynonzero:", ynonzero print "NEW yzero:", yzero print "NEW total loss:", loss