Mercurial > pylearn
changeset 505:74b3e65f5f24
added smallNorb dataset, switched to PYLEARN_DATA_ROOT
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Wed, 29 Oct 2008 17:09:04 -0400 |
parents | 19ab9ce916e3 |
children | eda3d576ee97 |
files | datasets/MNIST.py datasets/config.py datasets/smallNorb.py |
diffstat | 3 files changed, 108 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/datasets/MNIST.py Wed Oct 29 11:38:49 2008 -0400 +++ b/datasets/MNIST.py Wed Oct 29 17:09:04 2008 -0400 @@ -3,11 +3,11 @@ """ from __future__ import absolute_import +import os import numpy from ..amat import AMat - -from .config import MNIST_amat +from .config import data_root def head(n=10, path=None): """Load the first MNIST examples. @@ -17,7 +17,7 @@ is the label of the i'th row of x. """ - path = MNIST_amat if path is None else path + path = os.path.join(data_root(), 'mnist','mnist.amat') if path is None else path dat = AMat(path=path, head=n)
--- a/datasets/config.py Wed Oct 29 11:38:49 2008 -0400 +++ b/datasets/config.py Wed Oct 29 17:09:04 2008 -0400 @@ -5,8 +5,9 @@ """ import os - def env_get(key, default): return default if os.getenv(key) is None else os.getenv(key) -MNIST_amat = env_get('PYLEARN_MNIST_AMAT', '/u/bergstrj/pub/data/mnist.amat') +def data_root(): + return env_get('PYLEARN_DATA_ROOT', '/u/bergstrj/pub/data/') +
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/datasets/smallNorb.py Wed Oct 29 17:09:04 2008 -0400 @@ -0,0 +1,102 @@ +import os +import numpy +from ..filetensor import read +from .config import data_root + +#Path = '/u/bergstrj/pub/data/smallnorb' +#Path = '/home/fringant2/lisa/louradoj/data/smallnorb' +#Path = '/home/louradou/data/norb' + +class Paths(object): + """File-related operations on smallNorb + """ + def __init__(self): + smallnorb = [data_root(), 'smallnorb'] + self.train_dat = os.path.join(*\ + smallnorb + ['smallnorb-5x46789x9x18x6x2x96x96-training-dat.mat']) + self.test_dat = os.path.join(*\ + smallnorb + ['smallnorb-5x01235x9x18x6x2x96x96-testing-dat.mat']) + self.train_cat = os.path.join(*\ + smallnorb + ['smallnorb-5x46789x9x18x6x2x96x96-training-cat.mat']) + self.test_cat = os.path.join(*\ + smallnorb + ['smallnorb-5x01235x9x18x6x2x96x96-testing-cat.mat']) + self.train_info = os.path.join(*\ + smallnorb + ['smallnorb-5x46789x9x18x6x2x96x96-training-info.mat']) + self.test_info = os.path.join(*\ + smallnorb + ['smallnorb-5x01235x9x18x6x2x96x96-testing-info.mat']) + + def load_append_train_test(self, normalize_pixels=True, downsample_amt=1, dtype='float64'): + + def downsample(dataset): + return dataset[:, 0, ::downsample_amt, ::downsample_amt] + samples = downsample(read(open(self.train_dat))) + samples = numpy.vstack((samples, downsample(read(open(self.test_dat))))) + samples = numpy.asarray(samples, dtype=dtype) + if normalize_pixels: + samples *= (1.0 / 255.0) + + labels = read(open(self.train_cat)) + labels = numpy.hstack((labels, read(open(self.test_cat)))) + + infos = read(open(self.train_info)) + infos = numpy.vstack((infos, read(open(self.test_info)))) + + return samples, labels, infos + +def smallnorb_iid(ntrain=29160, nvalid=9720, ntest=9720, dtype='float64', normalize_pixels=True): + """Variation of the smallNorb task in which we randomly shuffle all the object instances + together before dividing into train/valid/test. + + The default train/valid/test sizes correspond to 60/20/20 split of the entire dataset. + + :returns: 5, (train_x, train_labels), (valid_x, valid_labels), (test_x, test_labels) + + """ + # cut from /u/louradoj/theano/hpu/expcode1.py + rng = numpy.random.RandomState(1) + samples, labels, infos = Paths().load_append_train_test(downsample_amt=3, dtype=dtype, normalize_pixels=normalize_pixels) + + nsamples = samples.shape[0] + if ntrain + nvalid + ntest > nsamples: + raise Exception("ntrain+nvalid+ntest exceeds number of samples (%i)" % nsamples, + (ntrain, nvalid, ntest)) + i0 = 0 + i1 = ntrain + i2 = ntrain + nvalid + i3 = ntrain + nvalid + ntest + + indices = rng.permutation(nsamples) + train_rows = indices[i0:i1] + valid_rows = indices[i1:i2] + test_rows = indices[i2:i3] + + n_labels = 5 + + def _pick_rows(rows): + a = numpy.array([ samples[i].flatten() for i in train_rows]) + b = numpy.array([ [labels[i]] for i in train_rows]) + return a, b + + return n_labels, [_pick_rows(r) for r in (train_rows, valid_rows, test_rows)] + +def smallnorb_azSplit(): + # cut from /u/louradoj/theano/hpu/expcode1.py + # WARNING NOT NECESSARILY WORKING CODE + + samples, labels, infos = _load_append_train_test() + train_rows, valid_rows, test_rows = [], [], [] + train_rows_azimuth = [] + for instance in range(10): + az_min = 4*instance + az_max = 4*instance + 18 + train_rows_azimuth.append( [a % 36 for a in range(az_min,az_max,2)] ) + #print "train_rows_azimuth", train_rows_azimuth + for i, info in enumerate(infos): + if info[2] in train_rows_azimuth[info[0]]: + train_rows.append(i) + elif info[2] / 2 % 2 == 0: + test_rows.append(i) + else: + valid_rows.append(i) + + return [_pick_rows(samples, labels, r) for r in (train_rows, valid_rows, test_rows)]