changeset 52:e3ac93e27e16

Automated merge with ssh://p-omega1@lgcm.iro.umontreal.ca/tlearn
author Frederic Bastien <bastienf@iro.umontreal.ca>
date Tue, 29 Apr 2008 14:40:44 -0400
parents 59757365a057 (diff) 718befdc8671 (current diff)
children a1eb3dbc035d
files dataset.py test_dataset.py
diffstat 2 files changed, 4 insertions(+), 4 deletions(-) [+]
line wrap: on
line diff
--- a/dataset.py	Tue Apr 29 14:34:40 2008 -0400
+++ b/dataset.py	Tue Apr 29 14:40:44 2008 -0400
@@ -30,7 +30,7 @@
     * for example in dataset([field1, field2,field3, ...]):
     * for val1,val2,val3 in dataset([field1, field2,field3]):
     * for minibatch in dataset.minibatches([field1, field2, ...],minibatch_size=N):
-    * for mini1,mini2,mini3 in dataset.minibatches([field1, field2, ...],minibatch_size=N):
+    * for mini1,mini2,mini3 in dataset.minibatches([field1, field2, field3], minibatch_size=N):
     * for example in dataset:
         print example['x']
     * for x,y,z in dataset:
@@ -46,8 +46,8 @@
     To iterate over fields, one can do
     * for field in dataset.fields():
          for field_value in field: # iterate over the values associated to that field for all the dataset examples
-    * for fields in dataset(field1,field2,...).fields() to select a subset of fields
-    * for fields in dataset.fields(field1,field2,...) to select a subset of fields
+    * for field in dataset(field1,field2,...).fields() to select a subset of fields
+    * for field in dataset.fields(field1,field2,...) to select a subset of fields
     and each of these fields is iterable over the examples:
     * for field_examples in dataset.fields():
         for example_value in field_examples:
--- a/test_dataset.py	Tue Apr 29 14:34:40 2008 -0400
+++ b/test_dataset.py	Tue Apr 29 14:40:44 2008 -0400
@@ -1,4 +1,4 @@
-
+#!/bin/env python
 from dataset import *
 from math import *
 import numpy