Mercurial > pylearn
changeset 907:6d4f98f86514
fix import and fix method name change. This uncover other change not reflected into the test.
author | Frederic Bastien <nouiz@nouiz.org> |
---|---|
date | Thu, 18 Mar 2010 11:18:20 -0400 |
parents | d1a757d17e19 |
children | 8e3f1d852ab1 |
files | pylearn/shared/layers/kording2004.py pylearn/shared/layers/tests/test_kouh2008.py |
diffstat | 2 files changed, 5 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/shared/layers/kording2004.py Thu Mar 18 10:49:09 2010 -0400 +++ b/pylearn/shared/layers/kording2004.py Thu Mar 18 11:18:20 2010 -0400 @@ -1,7 +1,6 @@ import numpy import theano.tensor -from hpu.theano_outgoing import mean, var, cov - +from theano.tensor.basic import mean from pylearn.shared.layers.exponential_mean import ExponentialMean # exponential_mean.py import logging
--- a/pylearn/shared/layers/tests/test_kouh2008.py Thu Mar 18 10:49:09 2010 -0400 +++ b/pylearn/shared/layers/tests/test_kouh2008.py Thu Mar 18 11:18:20 2010 -0400 @@ -9,9 +9,9 @@ n_out = 10 n_terms = 3 rng = numpy.random.RandomState(23455) - layer = Kouh2008.new_filters(rng, tensor.dmatrix(), n_in, n_out, n_terms, dtype='float64') + layer = Kouh2008.new_filters_expbounds(rng, tensor.dmatrix(), n_in, n_out, n_terms, dtype='float64') assert layer.output.dtype =='float64' - layer = Kouh2008.new_filters(rng, tensor.fmatrix(), n_in, n_out, n_terms, dtype='float32') + layer = Kouh2008.new_filters_expbounds(rng, tensor.fmatrix(), n_in, n_out, n_terms, dtype='float32') assert layer.output.dtype =='float32' def run_w_random(bsize=10, n_iter=200, n_in = 1024, n_out = 100, n_terms=2, dtype='float64'): @@ -19,7 +19,7 @@ y = tensor.lvector() rng = numpy.random.RandomState(23455) - layer = Kouh2008.new_filters(rng, x, n_in, n_out, n_terms, dtype='float64') + layer = Kouh2008.new_filters_expbounds(rng, x, n_in, n_out, n_terms, dtype='float64') out = LogisticRegression.new(layer.output, n_out, 2) cost = out.nll(y).sum() @@ -52,7 +52,7 @@ y = tensor.lvector() rng = numpy.random.RandomState(23455) - layer = Kouh2008.new_filters(rng, x, n_in, n_out, n_terms, dtype='float64') + layer = Kouh2008.new_filters_expbounds(rng, x, n_in, n_out, n_terms, dtype='float64') out = LogisticRegression.new(layer.output, n_out, 2) cost = out.nll(y).sum() #joint optimization except for one of the linear filters