Mercurial > pylearn
changeset 662:6c602a86e711
Refactored poisson loss.
author | Joseph Turian <turian@iro.umontreal.ca> |
---|---|
date | Tue, 10 Mar 2009 19:03:38 -0400 |
parents | d8ad0ce259a6 |
children | b282a5c2f76b |
files | pylearn/algorithms/sandbox/cost.py pylearn/algorithms/sandbox/test_cost.py |
diffstat | 2 files changed, 34 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/algorithms/sandbox/cost.py Tue Mar 10 15:58:52 2009 -0400 +++ b/pylearn/algorithms/sandbox/cost.py Tue Mar 10 19:03:38 2009 -0400 @@ -28,8 +28,9 @@ return v def impl(self, x): return LogFactorial.st_impl(x) - def grad(self, (x,), (gz,)): - raise NotImplementedError('gradient not defined over discrete values') +# def grad(self, (x,), (gz,)): +# raise NotImplementedError('gradient not defined over discrete values') +# return None # return [gz * (1 + scalar.log(x))] # def c_code(self, node, name, (x,), (z,), sub): # if node.inputs[0].type in [scalar.float32, scalar.float64]: @@ -42,7 +43,22 @@ logfactorial = tensor.Elemwise(scalar_logfactorial, name='logfactorial') -def nlpoisson(target, output, beta_scale=1, axis=0): +def poissonlambda(unscaled_output, doclen, beta_scale): + """ + A continuous parameter lambda_i which is the expected number of + occurence of word i in the document. Note how this must be positive, + and that is why Ranzato and Szummer (2008) use an exponential. + + Yoshua: I don't like exponentials to guarantee positivity. softplus + is numerically much better behaved (but you might want to try both + to see if it makes a difference). + + @todo: Maybe there are more sensible ways to set the beta_scale. + """ + beta = beta_scale * doclen + return beta * tensor.exp(unscaled_output) + +def nlpoisson(target, output, beta_scale=1, axis=0, sumloss=True, zerothreshold=0): """ The negative log Poisson regression probability. From Ranzato and Szummer (2008). @@ -58,11 +74,22 @@ Axis is the axis along which we sum the target values, to obtain the document length. + + If sumloss, we sum the loss along axis. + + If zerothreshold is non-zero, we threshold the loss: + If this target dimension is zero and beta * tensor.exp(output) + < zerothreshold, let this loss be zero. """ # from theano.printing import Print doclen = tensor.sum(target, axis=axis) - beta = beta_scale * doclen - return tensor.sum(beta * tensor.exp(output) - target*output + logfactorial(target), axis=axis) + lambdav = poissonlambda(output, doclen, beta_scale) + lossterms = lambdav - target*output + if sumloss: + return tensor.sum(lossterms, axis=axis) + else: + return lossterms +# return tensor.sum(beta * tensor.exp(output) - target*output + logfactorial(target), axis=axis) #import numpy
--- a/pylearn/algorithms/sandbox/test_cost.py Tue Mar 10 15:58:52 2009 -0400 +++ b/pylearn/algorithms/sandbox/test_cost.py Tue Mar 10 19:03:38 2009 -0400 @@ -35,7 +35,9 @@ output = TT.as_tensor([0., 1, 1., 0, 1, 0, 5, 1]) loss = cost.nlpoisson(target, output) (goutput) = TT.grad(loss, [output]) +# (goutput) = TT.grad(loss, [target]) f = T.function([], goutput) + print f() self.failUnless(f() - 33751.7816277 < 1e-5) if __name__ == '__main__':