Mercurial > pylearn
changeset 995:68ca3ea34e72
mcRBM - cleaned up new_from_dims
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Tue, 24 Aug 2010 15:28:13 -0400 |
parents | 610f563fb24a |
children | 60f279ec0f7f |
files | pylearn/algorithms/mcRBM.py |
diffstat | 1 files changed, 35 insertions(+), 31 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/algorithms/mcRBM.py Tue Aug 24 14:54:41 2010 -0400 +++ b/pylearn/algorithms/mcRBM.py Tue Aug 24 15:28:13 2010 -0400 @@ -309,6 +309,15 @@ class MeanCovRBM(object): """Container for mcRBM parameters that gives more convenient access to mcRBM methods. + + Attributes: + + - U - the covariance filters + - W - the mean filters + - a - the visible bias + - b - the covariance bias + - c - the mean bias + """ params = property(lambda s: [s.U, s.W, s.a, s.b, s.c]) @@ -316,40 +325,36 @@ n_visible = property(lambda s: s.W.value.shape[0]) def __init__(self, U, W, a, b, c): - self.U = as_shared(U, 'U') - self.W = as_shared(W, 'W') - self.a = as_shared(a, 'a') - self.b = as_shared(b, 'b') - self.c = as_shared(c, 'c') - - assert self.b.type.dtype == 'float32' + self.__dict__.update(locals()) + del self.__dict__['self'] @classmethod - def new_from_dims(cls, - n_I, # input dimensionality - n_K, # number of covariance hidden units - n_F, # number of covariance filters (squared) - n_J, # number of mean filters (linear) - seed = 8923402190, - ): + def new_from_dims(cls, n_I, n_K, n_J, rng = 8923402190): """ Return a MeanCovRBM instance with randomly-initialized parameters. - """ - rng = np.random.RandomState(seed) - # initialization taken from Marc'Aurelio + :param n_I: input dimensionality + :param n_K: number of covariance hidden units + :param n_J: number of mean filters (linear) + :param rng: seed or numpy RandomState object to initialize params + """ + if not hasattr(rng, 'randn'): + rng = np.random.RandomState(rng) + def shrd(X,name): + return shared(X.astype(floatX), name=name) + + # initialization taken from train_mcRBM.py return cls( - U = 0.02 * rng.randn(n_I, n_F), - W = 0.05 * rng.randn(n_I, n_J), - #W = rng.randn(n_I, n_J)/np.sqrt((n_I+n_J)/2), - a = np.ones(n_I)*(0), - b = np.ones(n_K)*2, - c = np.ones(n_J)*(-2),) + U = shrd(0.02 * rng.randn(n_I, n_K),'U'), + W = shrd(0.05 * rng.randn(n_I, n_J),'W'), + a = shrd(np.ones(n_I)*(0),'a'), + b = shrd(np.ones(n_K)*2,'b'), + c = shrd(np.ones(n_J)*(-2),'c')) def __getstate__(self): - # unpack shared containers, which may have references to Theano stuff - # and are not a long-term stable data type. + # unpack shared containers, which may have references to Theano stuff and are not a + # long-term stable data type. return dict( U = self.U.value, W = self.W.value, @@ -357,7 +362,10 @@ c = self.c.value) def __setstate__(self, dct): - self.__init__(**dct) # calls as_shared on pickled arrays + d = dict(dct) + for key in ['U', 'W', 'a', 'b', 'c']: + d[key] = shared(d[key], name=key) + self.__init__(**d) def hmc_sampler(self, n_particles, rng=7823748): """Return an HMC_sampler that will draw samples from the distribution over visible @@ -419,11 +427,7 @@ n_F=256 n_J=100 - rbm = MeanCovRBM.new_from_dims(n_I=R*C, - n_K=n_K, - n_J=n_J, - n_F=n_F, - ) + rbm = MeanCovRBM.new_from_dims(n_I=R*C, n_K=n_K, n_J=n_J) sampler = rbm.hmc_sampler(n_particles=batchsize)