Mercurial > pylearn
changeset 1521:6397233f3ccd
autopep8
author | Frederic Bastien <nouiz@nouiz.org> |
---|---|
date | Wed, 31 Oct 2012 16:12:57 -0400 |
parents | 61134776e33c |
children | 5972fab3cfd2 |
files | pylearn/dataset_ops/image_patches.py |
diffstat | 1 files changed, 27 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/dataset_ops/image_patches.py Wed Oct 31 14:36:55 2012 -0400 +++ b/pylearn/dataset_ops/image_patches.py Wed Oct 31 16:12:57 2012 -0400 @@ -1,60 +1,64 @@ -import os, numpy +import os +import numpy import theano from pylearn.datasets.image_patches import ( olshausen_field_1996_whitened_images, extract_random_patches) -from .protocol import TensorFnDataset # protocol.py __init__.py +from .protocol import TensorFnDataset # protocol.py __init__.py from .memo import memo import scipy.io from pylearn.io import image_tiling from pylearn.datasets.config import get_filepath_in_roots + @memo -def get_dataset(N,R,C,dtype,center,unitvar): - seed=98234 +def get_dataset(N, R, C, dtype, center, unitvar): + seed = 98234 rng = numpy.random.RandomState(seed) img_stack = olshausen_field_1996_whitened_images() - patch_stack = extract_random_patches(img_stack, N,R,C,rng) - rval = patch_stack.astype(dtype).reshape((N,(R*C))) + patch_stack = extract_random_patches(img_stack, N, R, C, rng) + rval = patch_stack.astype(dtype).reshape((N, (R * C))) if center: rval -= rval.mean(axis=0) if unitvar: - rval /= numpy.max(rval.std(axis=0),1e-8) + rval /= numpy.max(rval.std(axis=0), 1e-8) return rval + def image_patches(s_idx, dims, split='train', dtype=theano.config.floatX, rasterized=False, center=True, unitvar=True, fn=get_dataset): - N,R,C=dims + N, R, C = dims if split != 'train': - raise NotImplementedError('train/test/valid splits for randomly sampled image patches?') + raise NotImplementedError( + 'train/test/valid splits for randomly sampled image patches?') if not rasterized: raise NotImplementedError() - op = TensorFnDataset(dtype, bcast=(False,), fn=(fn, (N,R,C,dtype,center,unitvar)), single_shape=(R*C,)) - x = op(s_idx%N) + op = TensorFnDataset(dtype, bcast=(False, ), fn=(fn, (N, R, C, dtype, + center, unitvar)), single_shape=(R * C, )) + x = op(s_idx % N) if x.ndim == 1: if not rasterized: - x = x.reshape((20,20)) + x = x.reshape((20, 20)) elif x.ndim == 2: if not rasterized: - x = x.reshape((x.shape[0], 20,20)) + x = x.reshape((x.shape[0], 20, 20)) else: assert False, 'what happened?' return x - @memo def ranzato_hinton_2010(path=None): if path is None: @@ -62,12 +66,15 @@ 'training_colorpatches_16x16_demo.mat')) dct = scipy.io.loadmat(path) return dct + + def ranzato_hinton_2010_whitened_patches(path=None): """Return the pca of the data, which is 10240 x 105 """ dct = ranzato_hinton_2010(path) return dct['whitendata'].astype('float32') + def undo_pca_filters_of_ranzato_hinton_2010(X, path=None): """Return tuple (R,G,B,None) of matrices for matrix `X` of filters (one per row) @@ -75,15 +82,16 @@ """ dct = ranzato_hinton_2010(path) X = numpy.dot(X, dct['invpcatransf'].T) - return (X[:,:256], X[:,256:512], X[:,512:], None) + return (X[:, :256], X[:, 256:512], X[:, 512:], None) def save_filters_of_ranzato_hinton_2010(X, fname, min_dynamic_range=1e-3, data_path=None): _img = image_tiling.tile_raster_images( undo_pca_filters_of_ranzato_hinton_2010(X, path=data_path), - img_shape=(16,16), + img_shape=(16, 16), min_dynamic_range=min_dynamic_range) image_tiling.save_tiled_raster_images(_img, fname) + def ranzato_hinton_2010_op(s_idx, split='train', dtype=theano.config.floatX, rasterized=True, @@ -93,7 +101,8 @@ N = 10240 if split != 'train': - raise NotImplementedError('train/test/valid splits for randomly sampled image patches?') + raise NotImplementedError( + 'train/test/valid splits for randomly sampled image patches?') if not rasterized: # the data is provided as PCA-sphered, so rasterizing does not make sense @@ -108,5 +117,5 @@ bcast=(False,), fn=fn, single_shape=(105,)) - x = op(s_idx%N) + x = op(s_idx % N) return x