Mercurial > pylearn
changeset 617:5120bf7c4694
More complete version of shapeset1 dataset.
author | lamblinp@ip03.m |
---|---|
date | Sat, 17 Jan 2009 19:06:21 -0500 |
parents | d0f7a6f87adc |
children | 8aef46b42cb5 |
files | pylearn/datasets/shapeset1.py |
diffstat | 1 files changed, 29 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/datasets/shapeset1.py Sat Jan 17 17:38:17 2009 -0500 +++ b/pylearn/datasets/shapeset1.py Sat Jan 17 19:06:21 2009 -0500 @@ -9,6 +9,7 @@ from ..io.amat import AMat from .config import data_root +from .dataset import Dataset def _head(path, n): dat = AMat(path=path, head=n) @@ -25,10 +26,11 @@ def head_train(n=10000): """Load the first Shapeset1 training examples. - Returns two matrices: x, y. x has N rows of 1024 columns. Each row of x represents the - 32x32 grey-scale pixels in raster order. y is a vector of N integers. Each element y[i] - is the label of the i'th row of x. - + Returns two matrices: x, y. + x has N rows of 1024 columns. + Each row of x represents the 32x32 grey-scale pixels in raster order. + y is a vector of N integers between 0 and 2. + Each element y[i] is the label of the i'th row of x. """ path = os.path.join(data_root(), 'shapeset1','shapeset1_1cspo_2_3.10000.train.shape.amat') return _head(path, n) @@ -36,10 +38,11 @@ def head_valid(n=5000): """Load the first Shapeset1 validation examples. - Returns two matrices: x, y. x has N rows of 1024 columns. Each row of x represents the - 32x32 grey-scale pixels in raster order. y is a vector of N integers. Each element y[i] - is the label of the i'th row of x. - + Returns two matrices: x, y. + x has N rows of 1024 columns. + Each row of x represents the 32x32 grey-scale pixels in raster order. + y is a vector of N integers between 0 and 2. + Each element y[i] is the label of the i'th row of x. """ path = os.path.join(data_root(), 'shapeset1','shapeset1_1cspo_2_3.5000.valid.shape.amat') return _head(path, n) @@ -47,15 +50,28 @@ def head_test(n=5000): """Load the first Shapeset1 testing examples. - Returns two matrices: x, y. x has N rows of 1024 columns. Each row of x represents the - 32x32 grey-scale pixels in raster order. y is a vector of N integers. Each element y[i] - is the label of the i'th row of x. - + Returns two matrices: x, y. + x has N rows of 1024 columns. + Each row of x represents the 32x32 grey-scale pixels in raster order. + y is a vector of N integers between 0 and 2. + Each element y[i] is the label of the i'th row of x. """ path = os.path.join(data_root(), 'shapeset1','shapeset1_1cspo_2_3.5000.test.shape.amat') return _head(path, n) def train_valid_test(ntrain=10000, nvalid=5000, ntest=5000): - return head_train(n=ntrain), head_valid(n=nvalid), head_test(n=ntest) + train_x, train_y = head_train(n=ntrain) + valid_x, valid_y = head_valid(n=nvalid) + test_x, test_y = head_test(n=test) + + rval = Dataset() + rval.train = Dataset.Obj(x = train_x, y = train_y) + rval.valid = Dataset.Obj(x = valid_x, y = valid_y) + rval.test = Dataset.Obj(x = test_x, y = test_y) + + rval.n_classes = 3 + rval.img_shape = (32, 32) + + return rval