Mercurial > pylearn
changeset 417:4f61201fa9a9
Parameters are no longer global
author | Joseph Turian <turian@iro.umontreal.ca> |
---|---|
date | Fri, 11 Jul 2008 17:19:37 -0400 |
parents | 8849eba55520 |
children | 2ea14774eb07 |
files | sandbox/rbm/model.py sandbox/simple_autoassociator/README.txt sandbox/simple_autoassociator/globals.py sandbox/simple_autoassociator/main.py sandbox/simple_autoassociator/model.py sandbox/simple_autoassociator/parameters.py |
diffstat | 6 files changed, 42 insertions(+), 39 deletions(-) [+] |
line wrap: on
line diff
--- a/sandbox/rbm/model.py Fri Jul 11 16:34:46 2008 -0400 +++ b/sandbox/rbm/model.py Fri Jul 11 17:19:37 2008 -0400 @@ -59,7 +59,7 @@ random.seed(random_seed) - self.parameters = parameters.Parameters(input_dimension=self.input_dimension, hidden_dimension=self.hidden_dimension, randomly_initialize=False, random_seed=self.random_seed) + self.parameters = parameters.Parameters(input_dimension=self.input_dimension, hidden_dimension=self.hidden_dimension, randomly_initialize=True, random_seed=self.random_seed) self.prev_dw = 0 self.prev_db = 0 self.prev_dc = 0
--- a/sandbox/simple_autoassociator/README.txt Fri Jul 11 16:34:46 2008 -0400 +++ b/sandbox/simple_autoassociator/README.txt Fri Jul 11 17:19:37 2008 -0400 @@ -1,1 +1,5 @@ This seems to work. + +@todo: + * Add momentum. + * Add learning rate decay schedule.
--- a/sandbox/simple_autoassociator/globals.py Fri Jul 11 16:34:46 2008 -0400 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,12 +0,0 @@ -""" -Global variables. -""" - -INPUT_DIMENSION = 1000 -#INPUT_DIMENSION = 100 -#INPUT_DIMENSION = 4 -HIDDEN_DIMENSION = 10 -#HIDDEN_DIMENSION = 1 -LEARNING_RATE = 0.1 -LR = LEARNING_RATE -SEED = 666
--- a/sandbox/simple_autoassociator/main.py Fri Jul 11 16:34:46 2008 -0400 +++ b/sandbox/simple_autoassociator/main.py Fri Jul 11 17:19:37 2008 -0400 @@ -21,7 +21,7 @@ ##nonzero_instances.append({1: 0.2, 2: 0.3, 5: 0.5}) import model -model = model.Model() +model = model.Model(input_dimension=10, hidden_dimension=4) for i in xrange(100000): # # Select an instance
--- a/sandbox/simple_autoassociator/model.py Fri Jul 11 16:34:46 2008 -0400 +++ b/sandbox/simple_autoassociator/model.py Fri Jul 11 17:19:37 2008 -0400 @@ -6,22 +6,30 @@ from graph import trainfn import parameters -import globals -from globals import LR - import numpy import random -random.seed(globals.SEED) import pylearn.sparse_instance class Model: - def __init__(self): - self.parameters = parameters.Parameters(randomly_initialize=True) + """ + @todo: Add momentum. + @todo: Add learning rate decay schedule. + """ + def __init__(self, input_dimension, hidden_dimension, learning_rate = 0.1, weight_decay = 0.0002, random_seed = 666): + self.input_dimension = input_dimension + self.hidden_dimension = hidden_dimension + self.learning_rate = learning_rate + self.weight_decay = weight_decay + self.random_seed = random_seed -# def deterministic_reconstruction(self, x): -# (y, h, loss, gw1, gb1, gw2, gb2) = trainfn(x, self.parameters.w1, self.parameters.b1, self.parameters.w2, self.parameters.b2) -# return y + random.seed(random_seed) + + self.parameters = parameters.Parameters(input_dimension=self.input_dimension, hidden_dimension=self.hidden_dimension, randomly_initialize=True, random_seed=self.random_seed) + + def deterministic_reconstruction(self, x): + (y, h, loss, gw1, gb1, gw2, gb2) = trainfn(x, self.parameters.w1, self.parameters.b1, self.parameters.w2, self.parameters.b2) + return y def update(self, instances): """ @@ -29,10 +37,11 @@ @param instances: A list of dict from feature index to (non-zero) value. @todo: Should assert that nonzero_indices and zero_indices are correct (i.e. are truly nonzero/zero). + @todo: Multiply L{self.weight_decay} by L{self.learning_rate}, as done in Semantic Hashing? + @todo: Decay the biases too? """ minibatch = len(instances) -# x = pylearn.sparse_instance.to_vector(instances, self.input_dimension) - x = pylearn.sparse_instance.to_vector(instances, globals.INPUT_DIMENSION) + x = pylearn.sparse_instance.to_vector(instances, self.input_dimension) (y, h, loss, gw1, gb1, gw2, gb2) = trainfn(x, self.parameters.w1, self.parameters.b1, self.parameters.w2, self.parameters.b2) # print @@ -45,15 +54,18 @@ # print "gw2:", gw2 # print "gb2:", gb2 - # SGD update - self.parameters.w1 -= LR * gw1 - self.parameters.b1 -= LR * gb1 - self.parameters.w2 -= LR * gw2 - self.parameters.b2 -= LR * gb2 + self.parameters.w1 *= (1 - self.weight_decay) + self.parameters.w2 *= (1 - self.weight_decay) - # Recompute the loss, to make sure it's descreasing - (y, h, loss, gw1, gb1, gw2, gb2) = trainfn(x, self.parameters.w1, self.parameters.b1, self.parameters.w2, self.parameters.b2) -# print "NEW y:", y - print "NEW total loss:", loss -# print "h:", h -# print self.parameters + # SGD update + self.parameters.w1 -= self.learning_rate * gw1 / minibatch + self.parameters.b1 -= self.learning_rate * gb1 / minibatch + self.parameters.w2 -= self.learning_rate * gw2 / minibatch + self.parameters.b2 -= self.learning_rate * gb2 / minibatch + +# # Recompute the loss, to make sure it's descreasing +# (y, h, loss, gw1, gb1, gw2, gb2) = trainfn(x, self.parameters.w1, self.parameters.b1, self.parameters.w2, self.parameters.b2) +## print "NEW y:", y +# print "NEW total loss:", loss +## print "h:", h +## print self.parameters
--- a/sandbox/simple_autoassociator/parameters.py Fri Jul 11 16:34:46 2008 -0400 +++ b/sandbox/simple_autoassociator/parameters.py Fri Jul 11 17:19:37 2008 -0400 @@ -3,20 +3,19 @@ """ import numpy -import globals class Parameters: """ Parameters used by the L{Model}. """ - def __init__(self, input_dimension=globals.INPUT_DIMENSION, hidden_dimension=globals.HIDDEN_DIMENSION, randomly_initialize=False, seed=globals.SEED): + def __init__(self, input_dimension, hidden_dimension, randomly_initialize, random_seed): """ Initialize L{Model} parameters. @param randomly_initialize: If True, then randomly initialize according to the given seed. If False, then just use zeroes. """ if randomly_initialize: - numpy.random.seed(seed) + numpy.random.seed(random_seed) self.w1 = (numpy.random.rand(input_dimension, hidden_dimension)-0.5)/input_dimension self.w2 = (numpy.random.rand(hidden_dimension, input_dimension)-0.5)/hidden_dimension self.b1 = numpy.zeros(hidden_dimension)