Mercurial > pylearn
changeset 134:3f4e5c9bdc5e
Fixes to ApplyFunctionDataSet and other things to make learner and mlp work
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Fri, 09 May 2008 17:38:57 -0400 |
parents | b4657441dd65 |
children | 0d8e721cc63c ad144fa72bf5 |
files | dataset.py learner.py lookup_list.py mlp.py |
diffstat | 4 files changed, 65 insertions(+), 60 deletions(-) [+] |
line wrap: on
line diff
--- a/dataset.py Fri May 09 13:38:54 2008 -0400 +++ b/dataset.py Fri May 09 17:38:57 2008 -0400 @@ -16,6 +16,11 @@ raise AbstractFunction() def setAttributes(self,attribute_names,attribute_values,make_copies=False): + """ + Allow the attribute_values to not be a list (but a single value) if the attribute_names is of length 1. + """ + if len(attribute_names)==1 and not (isinstance(attribute_values,list) or isinstance(attribute_values,tuple) ): + attribute_values = [attribute_values] if make_copies: for name,value in zip(attribute_names,attribute_values): self.__setattr__(name,copy.deepcopy(value)) @@ -1113,14 +1118,14 @@ self.function=function self.output_names=output_names self.minibatch_mode=minibatch_mode - DataSet.__init__(description,fieldtypes) + DataSet.__init__(self,description,fieldtypes) self.valuesHStack = values_hstack if values_hstack else input_dataset.valuesHStack self.valuesVStack = values_vstack if values_vstack else input_dataset.valuesVStack def __len__(self): return len(self.input_dataset) - def fieldnames(self): + def fieldNames(self): return self.output_names def minibatches_nowrap(self,fieldnames,minibatch_size,n_batches,offset): @@ -1128,8 +1133,8 @@ def __init__(self,output_dataset): self.input_dataset=output_dataset.input_dataset self.output_dataset=output_dataset - self.input_iterator=input_dataset.minibatches(minibatch_size=minibatch_size, - n_batches=n_batches,offset=offset).__iter__() + self.input_iterator=self.input_dataset.minibatches(minibatch_size=minibatch_size, + n_batches=n_batches,offset=offset).__iter__() def __iter__(self): return self @@ -1137,7 +1142,7 @@ function_inputs = self.input_iterator.next() all_output_names = self.output_dataset.output_names if self.output_dataset.minibatch_mode: - function_outputs = self.output_dataset.function(function_inputs) + function_outputs = self.output_dataset.function(*function_inputs) else: input_examples = zip(*function_inputs) output_examples = [self.output_dataset.function(input_example) @@ -1150,7 +1155,7 @@ return all_outputs return Example(fieldnames,[all_outputs[name] for name in fieldnames]) - return ApplyFunctionIterator(self.input_dataset,self) + return ApplyFunctionIterator(self) def __iter__(self): # only implemented for increased efficiency class ApplyFunctionSingleExampleIterator(object):
--- a/learner.py Fri May 09 13:38:54 2008 -0400 +++ b/learner.py Fri May 09 17:38:57 2008 -0400 @@ -1,6 +1,7 @@ -from dataset import AttributesHolder,AbstractFunction -import compile +from dataset import AttributesHolder,AbstractFunction,ApplyFunctionDataSet,DataSet,CachedDataSet +import theano +from theano import compile from theano import tensor as t class Learner(AttributesHolder): @@ -132,22 +133,16 @@ """ return self.names2attributes(self.attributeNames(),return_copy) - def names2attributes(self,names,return_copy=False): + def names2attributes(self,names): """ Private helper function that maps a list of attribute names to a list of (optionally copies) values of attributes. """ - if return_copy: - return [copy.deepcopy(self.__getattribute__(name).data) for name in names] - else: - return [self.__getattribute__(name).data for name in names] - - def updateInputAttributes(self): - """ - A subset of self.attributeNames() which are the names of attributes needed by update() in order - to do its work. - """ - raise AbstractFunction() + res=[] + for name in names: + assert name in names + res.append(self.__getattribute__(name)) + return res def useInputAttributes(self): """ @@ -156,15 +151,6 @@ """ raise AbstractFunction() - def updateOutputAttributes(self): - """ - A subset of self.attributeNames() which are the names of attributes modified/created by update() in order - to do its work. - - By default these are inferred from the various update output attributes: - """ - return ["parameters"] + self.updateMinibatchOutputAttributes() + self.updateEndOutputAttributes() - def useOutputAttributes(self): """ A subset of self.attributeNames() which are the names of attributes modified/created by use() in order @@ -210,6 +196,7 @@ def __init__(self): Learner.__init__(self) + self.use_functions_dictionary={} def defaultOutputFields(self, input_fields): """ @@ -232,7 +219,7 @@ for attribute in stats_collector_inputs: if attribute not in input_fields: output_fields.append(attribute) - key = (input_fields,output_fields) + key = (tuple(input_fields),tuple(output_fields)) if key not in self.use_functions_dictionary: use_input_attributes = self.useInputAttributes() use_output_attributes = self.useOutputAttributes() @@ -240,7 +227,7 @@ self.names2OpResults(output_fields+use_output_attributes)) def f(*input_field_values): input_attribute_values = self.names2attributes(use_input_attributes) - results = complete_f(*(input_field_values + input_attribute_values)) + results = complete_f(*(list(input_field_values) + input_attribute_values)) output_field_values = results[0:len(output_fields)] output_attribute_values = results[len(output_fields):len(results)] if use_output_attributes: @@ -276,13 +263,11 @@ def __init__(self): TLearner.__init__(self) - self.update_minibatch_function = compile.function - (self.names2OpResults(self.updateMinibatchOutputAttributes()+ - self.updateMinibatchInputFields()), - self.names2OpResults(self.updateMinibatchOutputAttributes())) - self.update_end_function = compile.function - (self.names2OpResults(self.updateEndInputAttributes()), - self.names2OpResults(self.updateEndOutputAttributes())) + self.update_minibatch_function = compile.function(self.names2OpResults(self.updateMinibatchOutputAttributes()+ + self.updateMinibatchInputFields()), + self.names2OpResults(self.updateMinibatchOutputAttributes())) + self.update_end_function = compile.function(self.names2OpResults(self.updateEndInputAttributes()), + self.names2OpResults(self.updateEndOutputAttributes())) def allocate(self, minibatch): """ @@ -316,18 +301,17 @@ def updateEnd(self): self.setAttributes(self.updateEndOutputAttributes(), - self.update_end_function - (self.names2attributes(self.updateEndInputAttributes()))) + self.update_end_function(*self.names2attributes(self.updateEndInputAttributes()))) self.parameters = self.names2attributes(self.parameterAttributes()) def updateMinibatch(self,minibatch): # make sure all required fields are allocated and initialized self.allocate(minibatch) + input_attributes = self.names2attributes(self.updateMinibatchInputAttributes()) + input_fields = minibatch(*self.updateMinibatchInputFields()) self.setAttributes(self.updateMinibatchOutputAttributes(), # concatenate the attribute values and field values and then apply update fn - self.update_minibatch_function(*(self.names2attributes - (self.updateMinibatchInputAttributes())) - + minibatch(self.updateMinibatchInputFields()))) + self.update_minibatch_function(*(input_attributes+input_fields))) def isLastEpoch(self): """ @@ -387,6 +371,24 @@ for param in old_params]) MinibatchUpdatesTLearner.__init__(self) + + def namesOfAttributesToComputeOutputs(self,output_names): + """ + The output_names are attribute names (not the corresponding Result names, which have leading _). + Return the corresponding input names + """ + all_inputs = t.gof.graph.inputs(self.names2OpResults(output_names)) + # remove constants and leading '_' in name + + return [r.name for r in all_inputs if isinstance(r,theano.Result) and \ + not isinstance(r,theano.Constant) and not isinstance(r,theano.Value)] + #inputs = [] + #for r in all_inputs: + # if isinstance(r,theano.Result) and \ + # not isinstance(r,theano.Constant) and not isinstance(r,theano.Value): + # inputs.append(r.name) + #return inputs + def isLastEpoch(self): return self.truly_online @@ -397,6 +399,11 @@ return ["new_"+name for name in self.parameterAttributes()] def updateEndInputAttributes(self): + return self.namesOfAttributesToComputeOutputs(self.updateEndOutputAttributes()) + + def useInputAttributes(self): return self.parameterAttributes() + def useOutputAttributes(self): + return []
--- a/lookup_list.py Fri May 09 13:38:54 2008 -0400 +++ b/lookup_list.py Fri May 09 17:38:57 2008 -0400 @@ -49,7 +49,7 @@ The key in example[key] can either be an integer to index the fields or the name of the field. """ - if isinstance(key,int) or isinstance(key,slice) or isinstance(key,list): + if isinstance(key,int) or isinstance(key,slice) or (isinstance(key,list) and all([isinstance(i,int) for i in key])): return self._values[key] else: # if not an int, key must be a name # expecting key to be a valid field name
--- a/mlp.py Fri May 09 13:38:54 2008 -0400 +++ b/mlp.py Fri May 09 17:38:57 2008 -0400 @@ -68,7 +68,7 @@ """ - def __init__(self,n_hidden,n_classes,learning_rate,max_n_epochs,init_range=1.,n_inputs=None,minibatch_size=None): + def __init__(self,n_hidden,n_classes,learning_rate,max_n_epochs,L2_regularizer=0,init_range=1.,n_inputs=None,minibatch_size=None): self._n_inputs = n_inputs self._n_outputs = n_classes self._n_hidden = n_hidden @@ -76,9 +76,11 @@ self._max_n_epochs = max_n_epochs self._minibatch_size = minibatch_size self.learning_rate = learning_rate # this is the float + self.L2_regularizer = L2_regularizer self._learning_rate = t.scalar('learning_rate') # this is the symbol self._input = t.matrix('input') # n_examples x n_inputs - self._target = t.ivector('target') # n_examples x n_outputs + self._target = t.imatrix('target') # n_examples x 1 + self._target_vector = self._target[:,0] self._L2_regularizer = t.scalar('L2_regularizer') self._W1 = t.matrix('W1') self._W2 = t.matrix('W2') @@ -86,9 +88,9 @@ self._b2 = t.row('b2') self._regularization_term = self._L2_regularizer * (t.sum(self._W1*self._W1) + t.sum(self._W2*self._W2)) self._output_activations =self._b2+t.dot(t.tanh(self._b1+t.dot(self._input,self._W1.T)),self._W2.T) - self._nll,self._output = crossentropy_softmax_1hot(self._output_activations,self._target) - self._output_class = t.argmax(self._output,1) - self._class_error = self._output_class != self._target + self._nll,self._output = crossentropy_softmax_1hot(self._output_activations,self._target_vector) + self._output_class, self._max_output = t.argmax(self._output,1) + self._class_error = t.neq(self._output_class,self._target_vector) self._minibatch_criterion = self._nll + self._regularization_term / t.shape(self._input)[0] OnlineGradientTLearner.__init__(self) @@ -98,15 +100,6 @@ def parameterAttributes(self): return ["b1","W1", "b2", "W2"] - def useInputAttributes(self): - return self.parameterAttributes() - - def useOutputAttributes(self): - return [] - - def updateInputAttributes(self): - return self.parameterAttributes() + ["L2_regularizer"] - def updateMinibatchInputFields(self): return ["input","target"] @@ -126,8 +119,8 @@ minibatch_n_inputs = minibatch["input"].shape[1] if not self._n_inputs: self._n_inputs = minibatch_n_inputs - self.b1 = numpy.zeros(self._n_hidden) - self.b2 = numpy.zeros(self._n_outputs) + self.b1 = numpy.zeros((1,self._n_hidden)) + self.b2 = numpy.zeros((1,self._n_outputs)) self.forget() elif self._n_inputs!=minibatch_n_inputs: # if the input changes dimension on the fly, we resize and forget everything