changeset 393:36baeb7125a4

Made sandbox directory
author Joseph Turian <turian@gmail.com>
date Tue, 08 Jul 2008 18:46:26 -0400
parents e2cb8d489908
children f2d112dc53be
files sandbox/README.txt sandbox/simple_autoassociator/__init__.py sandbox/simple_autoassociator/globals.py sandbox/simple_autoassociator/graph.py sandbox/simple_autoassociator/main.py sandbox/simple_autoassociator/model.py sandbox/simple_autoassociator/parameters.py sandbox/sparse_random_autoassociator/__init__.py sandbox/sparse_random_autoassociator/globals.py sandbox/sparse_random_autoassociator/graph.py sandbox/sparse_random_autoassociator/main.py sandbox/sparse_random_autoassociator/model.py sandbox/sparse_random_autoassociator/parameters.py simple_autoassociator/README.txt simple_autoassociator/__init__.py simple_autoassociator/globals.py simple_autoassociator/graph.py simple_autoassociator/main.py simple_autoassociator/model.py simple_autoassociator/parameters.py sparse_random_autoassociator/README.txt sparse_random_autoassociator/__init__.py sparse_random_autoassociator/globals.py sparse_random_autoassociator/graph.py sparse_random_autoassociator/main.py sparse_random_autoassociator/model.py sparse_random_autoassociator/parameters.py
diffstat 23 files changed, 373 insertions(+), 374 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/sandbox/README.txt	Tue Jul 08 18:46:26 2008 -0400
@@ -0,0 +1,1 @@
+Stuff in the sandbox may be very broken and/or in flux.
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/sandbox/simple_autoassociator/globals.py	Tue Jul 08 18:46:26 2008 -0400
@@ -0,0 +1,12 @@
+"""
+Global variables.
+"""
+
+#INPUT_DIMENSION = 1000
+#INPUT_DIMENSION = 100
+INPUT_DIMENSION = 4
+HIDDEN_DIMENSION = 10
+#HIDDEN_DIMENSION = 4
+LEARNING_RATE = 0.1
+LR = LEARNING_RATE
+SEED = 666
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/sandbox/simple_autoassociator/graph.py	Tue Jul 08 18:46:26 2008 -0400
@@ -0,0 +1,26 @@
+"""
+Theano graph for a simple autoassociator.
+@todo: Make nearly everything private.
+"""
+
+from pylearn.nnet_ops import sigmoid, binary_crossentropy
+from theano import tensor as t
+from theano.tensor import dot
+x           = t.dvector()
+w1          = t.dmatrix()
+b1          = t.dvector()
+w2          = t.dmatrix()
+b2          = t.dvector()
+h           = sigmoid(dot(x, w1) + b1)
+y           = sigmoid(dot(h, w2) + b2)
+
+loss_unsummed = binary_crossentropy(y, x)
+loss = t.sum(loss_unsummed)
+
+(gw1, gb1, gw2, gb2, gy) = t.grad(loss, [w1, b1, w2, b2, y])
+
+import theano.compile
+
+inputs  = [x, w1, b1, w2, b2]
+outputs = [y, h, loss, loss_unsummed, gw1, gb1, gw2, gb2, gy]
+trainfn = theano.compile.function(inputs, outputs)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/sandbox/simple_autoassociator/main.py	Tue Jul 08 18:46:26 2008 -0400
@@ -0,0 +1,34 @@
+#!/usr/bin/python
+"""
+    A simple autoassociator.
+
+    The learned model is::
+       h   = sigmoid(dot(x, w1) + b1)
+       y   = sigmoid(dot(h, w2) + b2)
+
+    Binary xent loss.
+
+    LIMITATIONS:
+       - Only does pure stochastic gradient (batchsize = 1).
+"""
+
+
+import numpy
+
+nonzero_instances = []
+nonzero_instances.append({0: 1, 1: 1})
+nonzero_instances.append({0: 1, 2: 1})
+
+#nonzero_instances.append({1: 0.1, 5: 0.5, 9: 1})
+#nonzero_instances.append({2: 0.3, 5: 0.5, 8: 0.8})
+##nonzero_instances.append({1: 0.2, 2: 0.3, 5: 0.5})
+
+import model
+model = model.Model()
+
+for i in xrange(100000):
+    # Select an instance
+    instance = nonzero_instances[i % len(nonzero_instances)]
+
+    # SGD update over instance
+    model.update(instance)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/sandbox/simple_autoassociator/model.py	Tue Jul 08 18:46:26 2008 -0400
@@ -0,0 +1,57 @@
+"""
+The model for an autoassociator for sparse inputs, using Ronan Collobert + Jason
+Weston's sampling trick (2008).
+"""
+
+from graph import trainfn
+import parameters
+
+import globals
+from globals import LR
+
+import numpy
+import random
+random.seed(globals.SEED)
+
+class Model:
+    def __init__(self):
+        self.parameters = parameters.Parameters(randomly_initialize=True)
+
+    def update(self, instance):
+        """
+        Update the L{Model} using one training instance.
+        @param instance: A dict from feature index to (non-zero) value.
+        @todo: Should assert that nonzero_indices and zero_indices
+        are correct (i.e. are truly nonzero/zero).
+        """
+        x = numpy.zeros(globals.INPUT_DIMENSION)
+        for idx in instance.keys():
+            x[idx] = instance[idx]
+
+        (y, h, loss, loss_unsummed, gw1, gb1, gw2, gb2, gy) = trainfn(x, self.parameters.w1, self.parameters.b1, self.parameters.w2, self.parameters.b2)
+        print
+        print "instance:", instance
+        print "x:", x
+        print "OLD y:", y
+        print "OLD loss (unsummed):", loss_unsummed
+        print "gy:", gy
+        print "OLD total loss:", loss
+        print "gw1:", gw1
+        print "gb1:", gb1
+        print "gw2:", gw2
+        print "gb2:", gb2
+
+        # SGD update
+        self.parameters.w1  -= LR * gw1
+        self.parameters.b1  -= LR * gb1
+        self.parameters.w2  -= LR * gw2
+        self.parameters.b2  -= LR * gb2
+
+        # Recompute the loss, to make sure it's descreasing
+        (y, h, loss, loss_unsummed, gw1, gb1, gw2, gb2, gy) = trainfn(x, self.parameters.w1, self.parameters.b1, self.parameters.w2, self.parameters.b2)
+        print "NEW y:", y
+        print "NEW loss (unsummed):", loss_unsummed
+        print "gy:", gy
+        print "NEW total loss:", loss
+        print "h:", h
+        print self.parameters
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/sandbox/simple_autoassociator/parameters.py	Tue Jul 08 18:46:26 2008 -0400
@@ -0,0 +1,36 @@
+"""
+Parameters (weights) used by the L{Model}.
+"""
+
+import numpy
+import globals
+
+class Parameters:
+    """
+    Parameters used by the L{Model}.
+    """
+    def __init__(self, input_dimension=globals.INPUT_DIMENSION, hidden_dimension=globals.HIDDEN_DIMENSION, randomly_initialize=False, seed=globals.SEED):
+        """
+        Initialize L{Model} parameters.
+        @param randomly_initialize: If True, then randomly initialize
+        according to the given seed. If False, then just use zeroes.
+        """
+        if randomly_initialize:
+            numpy.random.seed(seed)
+            self.w1 = (numpy.random.rand(input_dimension, hidden_dimension)-0.5)/input_dimension
+            self.w2 = (numpy.random.rand(hidden_dimension, input_dimension)-0.5)/hidden_dimension
+            self.b1 = numpy.zeros(hidden_dimension)
+            self.b2 = numpy.zeros(input_dimension)
+        else:
+            self.w1 = numpy.zeros((input_dimension, hidden_dimension))
+            self.w2 = numpy.zeros((hidden_dimension, input_dimension))
+            self.b1 = numpy.zeros(hidden_dimension)
+            self.b2 = numpy.zeros(input_dimension)
+
+    def __str__(self):
+        s = ""
+        s += "w1: %s\n" % self.w1
+        s += "b1: %s\n" % self.b1
+        s += "w2: %s\n" % self.w2
+        s += "b2: %s\n" % self.b2
+        return s
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/sandbox/sparse_random_autoassociator/globals.py	Tue Jul 08 18:46:26 2008 -0400
@@ -0,0 +1,13 @@
+"""
+Global variables.
+"""
+
+INPUT_DIMENSION = 1000
+HIDDEN_DIMENSION = 20
+LEARNING_RATE = 0.1
+LR = LEARNING_RATE
+SEED = 666
+ZERO_SAMPLE_SIZE = 50
+#ZERO_SAMPLE_SIZE = 250
+MARGIN = 0.25
+#MARGIN = 0.0
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/sandbox/sparse_random_autoassociator/graph.py	Tue Jul 08 18:46:26 2008 -0400
@@ -0,0 +1,42 @@
+"""
+Theano graph for an autoassociator for sparse inputs, which will be trained
+using Ronan Collobert + Jason Weston's sampling trick (2008).
+@todo: Make nearly everything private.
+"""
+
+from globals import MARGIN
+
+from pylearn.nnet_ops import sigmoid, binary_crossentropy
+from theano import tensor as t
+from theano.tensor import dot
+xnonzero    = t.dvector()
+w1nonzero   = t.dmatrix()
+b1          = t.dvector()
+w2nonzero   = t.dmatrix()
+w2zero      = t.dmatrix()
+b2nonzero   = t.dvector()
+b2zero      = t.dvector()
+h           = sigmoid(dot(xnonzero, w1nonzero) + b1)
+ynonzero    = sigmoid(dot(h, w2nonzero) + b2nonzero)
+yzero       = sigmoid(dot(h, w2zero) + b2zero)
+
+# May want to weight loss wrt nonzero value? e.g. MARGIN violation for
+# 0.1 nonzero is not as bad as MARGIN violation for 0.2 nonzero.
+def hingeloss(MARGIN):
+    return -MARGIN * (MARGIN < 0)
+nonzeroloss = hingeloss(ynonzero - t.max(yzero) - MARGIN)
+zeroloss = hingeloss(-t.max(-(ynonzero)) - yzero - MARGIN)
+# xnonzero sensitive loss:
+#nonzeroloss = hingeloss(ynonzero - t.max(yzero) - MARGIN - xnonzero)
+#zeroloss = hingeloss(-t.max(-(ynonzero - xnonzero)) - yzero - MARGIN)
+loss = t.sum(nonzeroloss) + t.sum(zeroloss)
+
+#loss = t.sum(binary_crossentropy(ynonzero, xnonzero)) + t.sum(binary_crossentropy(yzero, t.constant(0)))
+
+(gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = t.grad(loss, [w1nonzero, b1, w2nonzero, w2zero, b2nonzero, b2zero])
+
+import theano.compile
+
+inputs  = [xnonzero, w1nonzero, b1, w2nonzero, w2zero, b2nonzero, b2zero]
+outputs = [ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero]
+trainfn = theano.compile.function(inputs, outputs)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/sandbox/sparse_random_autoassociator/main.py	Tue Jul 08 18:46:26 2008 -0400
@@ -0,0 +1,48 @@
+#!/usr/bin/python
+"""
+    An autoassociator for sparse inputs, using Ronan Collobert + Jason
+    Weston's sampling trick (2008).
+
+    The learned model is::
+       h   = sigmoid(dot(x, w1) + b1)
+       y   = sigmoid(dot(h, w2) + b2)
+
+    We assume that most of the inputs are zero, and hence that
+    we can separate x into xnonzero, x's nonzero components, and
+    xzero, a sample of the zeros. We sample---randomly without
+    replacement---ZERO_SAMPLE_SIZE zero columns from x.
+
+    The desideratum is that every nonzero entry is separated from every
+    zero entry by margin at least MARGIN.
+    For each ynonzero, we want it to exceed max(yzero) by at least MARGIN.
+    For each yzero, we want it to be exceed by min(ynonzero) by at least MARGIN.
+    The loss is a hinge loss (linear). The loss is irrespective of the
+    xnonzero magnitude (this may be a limitation). Hence, all nonzeroes
+    are equally important to exceed the maximum yzero.
+
+    (Alternately, there is a commented out binary xent loss.)
+
+    LIMITATIONS:
+       - Only does pure stochastic gradient (batchsize = 1).
+       - Loss is irrespective of the xnonzero magnitude.
+       - We will always use all nonzero entries, even if the training
+       instance is very non-sparse.
+"""
+
+
+import numpy
+
+nonzero_instances = []
+nonzero_instances.append({1: 0.1, 5: 0.5, 9: 1})
+nonzero_instances.append({2: 0.3, 5: 0.5, 8: 0.8})
+nonzero_instances.append({1: 0.2, 2: 0.3, 5: 0.5})
+
+import model
+model = model.Model()
+
+for i in xrange(100000):
+    # Select an instance
+    instance = nonzero_instances[i % len(nonzero_instances)]
+
+    # SGD update over instance
+    model.update(instance)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/sandbox/sparse_random_autoassociator/model.py	Tue Jul 08 18:46:26 2008 -0400
@@ -0,0 +1,76 @@
+"""
+The model for an autoassociator for sparse inputs, using Ronan Collobert + Jason
+Weston's sampling trick (2008).
+"""
+
+from graph import trainfn
+import parameters
+
+import globals
+from globals import LR
+
+import numpy
+import random
+random.seed(globals.SEED)
+
+def _select_indices(instance):
+    """
+    Choose nonzero and zero indices (feature columns) of the instance.
+    We select B{all} nonzero indices.
+    We select L{globals.ZERO_SAMPLE_SIZE} zero indices randomly,
+    without replacement.
+    @bug: If there are not ZERO_SAMPLE_SIZE zeroes, we will enter
+    an endless loop.
+    @return: (nonzero_indices, zero_indices)
+    """
+    # Get the nonzero indices
+    nonzero_indices = instance.keys()
+    nonzero_indices.sort()
+
+    # Get the zero indices
+    # @bug: If there are not ZERO_SAMPLE_SIZE zeroes, we will enter an endless loop.
+    zero_indices = []
+    while len(zero_indices) < globals.ZERO_SAMPLE_SIZE:
+        idx = random.randint(0, globals.INPUT_DIMENSION - 1)
+        if idx in nonzero_indices or idx in zero_indices: continue
+        zero_indices.append(idx)
+    zero_indices.sort()
+
+    return (nonzero_indices, zero_indices)
+
+class Model:
+    def __init__(self):
+        self.parameters = parameters.Parameters(randomly_initialize=True)
+
+    def update(self, instance):
+        """
+        Update the L{Model} using one training instance.
+        @param instance: A dict from feature index to (non-zero) value.
+        @todo: Should assert that nonzero_indices and zero_indices
+        are correct (i.e. are truly nonzero/zero).
+        """
+        (nonzero_indices, zero_indices) = _select_indices(instance)
+        # No update if there aren't any non-zeros.
+        if len(nonzero_indices) == 0: return
+        xnonzero = numpy.asarray([instance[idx] for idx in nonzero_indices])
+        print
+        print "xnonzero:", xnonzero
+
+        (ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = trainfn(xnonzero, self.parameters.w1[nonzero_indices, :], self.parameters.b1, self.parameters.w2[:, nonzero_indices], self.parameters.w2[:, zero_indices], self.parameters.b2[nonzero_indices], self.parameters.b2[zero_indices])
+        print "OLD ynonzero:", ynonzero
+        print "OLD yzero:", yzero
+        print "OLD total loss:", loss
+
+        # SGD update
+        self.parameters.w1[nonzero_indices, :]  -= LR * gw1nonzero
+        self.parameters.b1						-= LR * gb1
+        self.parameters.w2[:, nonzero_indices]  -= LR * gw2nonzero
+        self.parameters.w2[:, zero_indices]		-= LR * gw2zero
+        self.parameters.b2[nonzero_indices]		-= LR * gb2nonzero
+        self.parameters.b2[zero_indices]		-= LR * gb2zero
+
+        # Recompute the loss, to make sure it's descreasing
+        (ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = trainfn(xnonzero, self.parameters.w1[nonzero_indices, :], self.parameters.b1, self.parameters.w2[:, nonzero_indices], self.parameters.w2[:, zero_indices], self.parameters.b2[nonzero_indices], self.parameters.b2[zero_indices])
+        print "NEW ynonzero:", ynonzero
+        print "NEW yzero:", yzero
+        print "NEW total loss:", loss
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/sandbox/sparse_random_autoassociator/parameters.py	Tue Jul 08 18:46:26 2008 -0400
@@ -0,0 +1,28 @@
+"""
+Parameters (weights) used by the L{Model}.
+"""
+
+import numpy
+import globals
+
+class Parameters:
+    """
+    Parameters used by the L{Model}.
+    """
+    def __init__(self, input_dimension=globals.INPUT_DIMENSION, hidden_dimension=globals.HIDDEN_DIMENSION, randomly_initialize=False, seed=globals.SEED):
+        """
+        Initialize L{Model} parameters.
+        @param randomly_initialize: If True, then randomly initialize
+        according to the given seed. If False, then just use zeroes.
+        """
+        if randomly_initialize:
+            numpy.random.seed(seed)
+            self.w1 = (numpy.random.rand(input_dimension, hidden_dimension)-0.5)/input_dimension
+            self.w2 = (numpy.random.rand(hidden_dimension, input_dimension)-0.5)/hidden_dimension
+            self.b1 = numpy.zeros(hidden_dimension)
+            self.b2 = numpy.zeros(input_dimension)
+        else:
+            self.w1 = numpy.zeros((input_dimension, hidden_dimension))
+            self.w2 = numpy.zeros((hidden_dimension, input_dimension))
+            self.b1 = numpy.zeros(hidden_dimension)
+            self.b2 = numpy.zeros(input_dimension)
--- a/simple_autoassociator/README.txt	Tue Jul 08 18:45:35 2008 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-This may be buggy. -jpt
--- a/simple_autoassociator/globals.py	Tue Jul 08 18:45:35 2008 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,12 +0,0 @@
-"""
-Global variables.
-"""
-
-#INPUT_DIMENSION = 1000
-#INPUT_DIMENSION = 100
-INPUT_DIMENSION = 4
-HIDDEN_DIMENSION = 10
-#HIDDEN_DIMENSION = 4
-LEARNING_RATE = 0.1
-LR = LEARNING_RATE
-SEED = 666
--- a/simple_autoassociator/graph.py	Tue Jul 08 18:45:35 2008 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,26 +0,0 @@
-"""
-Theano graph for a simple autoassociator.
-@todo: Make nearly everything private.
-"""
-
-from pylearn.nnet_ops import sigmoid, binary_crossentropy
-from theano import tensor as t
-from theano.tensor import dot
-x           = t.dvector()
-w1          = t.dmatrix()
-b1          = t.dvector()
-w2          = t.dmatrix()
-b2          = t.dvector()
-h           = sigmoid(dot(x, w1) + b1)
-y           = sigmoid(dot(h, w2) + b2)
-
-loss_unsummed = binary_crossentropy(y, x)
-loss = t.sum(loss_unsummed)
-
-(gw1, gb1, gw2, gb2, gy) = t.grad(loss, [w1, b1, w2, b2, y])
-
-import theano.compile
-
-inputs  = [x, w1, b1, w2, b2]
-outputs = [y, h, loss, loss_unsummed, gw1, gb1, gw2, gb2, gy]
-trainfn = theano.compile.function(inputs, outputs)
--- a/simple_autoassociator/main.py	Tue Jul 08 18:45:35 2008 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,34 +0,0 @@
-#!/usr/bin/python
-"""
-    A simple autoassociator.
-
-    The learned model is::
-       h   = sigmoid(dot(x, w1) + b1)
-       y   = sigmoid(dot(h, w2) + b2)
-
-    Binary xent loss.
-
-    LIMITATIONS:
-       - Only does pure stochastic gradient (batchsize = 1).
-"""
-
-
-import numpy
-
-nonzero_instances = []
-nonzero_instances.append({0: 1, 1: 1})
-nonzero_instances.append({0: 1, 2: 1})
-
-#nonzero_instances.append({1: 0.1, 5: 0.5, 9: 1})
-#nonzero_instances.append({2: 0.3, 5: 0.5, 8: 0.8})
-##nonzero_instances.append({1: 0.2, 2: 0.3, 5: 0.5})
-
-import model
-model = model.Model()
-
-for i in xrange(100000):
-    # Select an instance
-    instance = nonzero_instances[i % len(nonzero_instances)]
-
-    # SGD update over instance
-    model.update(instance)
--- a/simple_autoassociator/model.py	Tue Jul 08 18:45:35 2008 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,57 +0,0 @@
-"""
-The model for an autoassociator for sparse inputs, using Ronan Collobert + Jason
-Weston's sampling trick (2008).
-"""
-
-from graph import trainfn
-import parameters
-
-import globals
-from globals import LR
-
-import numpy
-import random
-random.seed(globals.SEED)
-
-class Model:
-    def __init__(self):
-        self.parameters = parameters.Parameters(randomly_initialize=True)
-
-    def update(self, instance):
-        """
-        Update the L{Model} using one training instance.
-        @param instance: A dict from feature index to (non-zero) value.
-        @todo: Should assert that nonzero_indices and zero_indices
-        are correct (i.e. are truly nonzero/zero).
-        """
-        x = numpy.zeros(globals.INPUT_DIMENSION)
-        for idx in instance.keys():
-            x[idx] = instance[idx]
-
-        (y, h, loss, loss_unsummed, gw1, gb1, gw2, gb2, gy) = trainfn(x, self.parameters.w1, self.parameters.b1, self.parameters.w2, self.parameters.b2)
-        print
-        print "instance:", instance
-        print "x:", x
-        print "OLD y:", y
-        print "OLD loss (unsummed):", loss_unsummed
-        print "gy:", gy
-        print "OLD total loss:", loss
-        print "gw1:", gw1
-        print "gb1:", gb1
-        print "gw2:", gw2
-        print "gb2:", gb2
-
-        # SGD update
-        self.parameters.w1  -= LR * gw1
-        self.parameters.b1  -= LR * gb1
-        self.parameters.w2  -= LR * gw2
-        self.parameters.b2  -= LR * gb2
-
-        # Recompute the loss, to make sure it's descreasing
-        (y, h, loss, loss_unsummed, gw1, gb1, gw2, gb2, gy) = trainfn(x, self.parameters.w1, self.parameters.b1, self.parameters.w2, self.parameters.b2)
-        print "NEW y:", y
-        print "NEW loss (unsummed):", loss_unsummed
-        print "gy:", gy
-        print "NEW total loss:", loss
-        print "h:", h
-        print self.parameters
--- a/simple_autoassociator/parameters.py	Tue Jul 08 18:45:35 2008 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,36 +0,0 @@
-"""
-Parameters (weights) used by the L{Model}.
-"""
-
-import numpy
-import globals
-
-class Parameters:
-    """
-    Parameters used by the L{Model}.
-    """
-    def __init__(self, input_dimension=globals.INPUT_DIMENSION, hidden_dimension=globals.HIDDEN_DIMENSION, randomly_initialize=False, seed=globals.SEED):
-        """
-        Initialize L{Model} parameters.
-        @param randomly_initialize: If True, then randomly initialize
-        according to the given seed. If False, then just use zeroes.
-        """
-        if randomly_initialize:
-            numpy.random.seed(seed)
-            self.w1 = (numpy.random.rand(input_dimension, hidden_dimension)-0.5)/input_dimension
-            self.w2 = (numpy.random.rand(hidden_dimension, input_dimension)-0.5)/hidden_dimension
-            self.b1 = numpy.zeros(hidden_dimension)
-            self.b2 = numpy.zeros(input_dimension)
-        else:
-            self.w1 = numpy.zeros((input_dimension, hidden_dimension))
-            self.w2 = numpy.zeros((hidden_dimension, input_dimension))
-            self.b1 = numpy.zeros(hidden_dimension)
-            self.b2 = numpy.zeros(input_dimension)
-
-    def __str__(self):
-        s = ""
-        s += "w1: %s\n" % self.w1
-        s += "b1: %s\n" % self.b1
-        s += "w2: %s\n" % self.w2
-        s += "b2: %s\n" % self.b2
-        return s
--- a/sparse_random_autoassociator/README.txt	Tue Jul 08 18:45:35 2008 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-This may be buggy. -jpt
--- a/sparse_random_autoassociator/globals.py	Tue Jul 08 18:45:35 2008 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,13 +0,0 @@
-"""
-Global variables.
-"""
-
-INPUT_DIMENSION = 1000
-HIDDEN_DIMENSION = 20
-LEARNING_RATE = 0.1
-LR = LEARNING_RATE
-SEED = 666
-ZERO_SAMPLE_SIZE = 50
-#ZERO_SAMPLE_SIZE = 250
-MARGIN = 0.25
-#MARGIN = 0.0
--- a/sparse_random_autoassociator/graph.py	Tue Jul 08 18:45:35 2008 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,42 +0,0 @@
-"""
-Theano graph for an autoassociator for sparse inputs, which will be trained
-using Ronan Collobert + Jason Weston's sampling trick (2008).
-@todo: Make nearly everything private.
-"""
-
-from globals import MARGIN
-
-from pylearn.nnet_ops import sigmoid, binary_crossentropy
-from theano import tensor as t
-from theano.tensor import dot
-xnonzero    = t.dvector()
-w1nonzero   = t.dmatrix()
-b1          = t.dvector()
-w2nonzero   = t.dmatrix()
-w2zero      = t.dmatrix()
-b2nonzero   = t.dvector()
-b2zero      = t.dvector()
-h           = sigmoid(dot(xnonzero, w1nonzero) + b1)
-ynonzero    = sigmoid(dot(h, w2nonzero) + b2nonzero)
-yzero       = sigmoid(dot(h, w2zero) + b2zero)
-
-# May want to weight loss wrt nonzero value? e.g. MARGIN violation for
-# 0.1 nonzero is not as bad as MARGIN violation for 0.2 nonzero.
-def hingeloss(MARGIN):
-    return -MARGIN * (MARGIN < 0)
-nonzeroloss = hingeloss(ynonzero - t.max(yzero) - MARGIN)
-zeroloss = hingeloss(-t.max(-(ynonzero)) - yzero - MARGIN)
-# xnonzero sensitive loss:
-#nonzeroloss = hingeloss(ynonzero - t.max(yzero) - MARGIN - xnonzero)
-#zeroloss = hingeloss(-t.max(-(ynonzero - xnonzero)) - yzero - MARGIN)
-loss = t.sum(nonzeroloss) + t.sum(zeroloss)
-
-#loss = t.sum(binary_crossentropy(ynonzero, xnonzero)) + t.sum(binary_crossentropy(yzero, t.constant(0)))
-
-(gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = t.grad(loss, [w1nonzero, b1, w2nonzero, w2zero, b2nonzero, b2zero])
-
-import theano.compile
-
-inputs  = [xnonzero, w1nonzero, b1, w2nonzero, w2zero, b2nonzero, b2zero]
-outputs = [ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero]
-trainfn = theano.compile.function(inputs, outputs)
--- a/sparse_random_autoassociator/main.py	Tue Jul 08 18:45:35 2008 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,48 +0,0 @@
-#!/usr/bin/python
-"""
-    An autoassociator for sparse inputs, using Ronan Collobert + Jason
-    Weston's sampling trick (2008).
-
-    The learned model is::
-       h   = sigmoid(dot(x, w1) + b1)
-       y   = sigmoid(dot(h, w2) + b2)
-
-    We assume that most of the inputs are zero, and hence that
-    we can separate x into xnonzero, x's nonzero components, and
-    xzero, a sample of the zeros. We sample---randomly without
-    replacement---ZERO_SAMPLE_SIZE zero columns from x.
-
-    The desideratum is that every nonzero entry is separated from every
-    zero entry by margin at least MARGIN.
-    For each ynonzero, we want it to exceed max(yzero) by at least MARGIN.
-    For each yzero, we want it to be exceed by min(ynonzero) by at least MARGIN.
-    The loss is a hinge loss (linear). The loss is irrespective of the
-    xnonzero magnitude (this may be a limitation). Hence, all nonzeroes
-    are equally important to exceed the maximum yzero.
-
-    (Alternately, there is a commented out binary xent loss.)
-
-    LIMITATIONS:
-       - Only does pure stochastic gradient (batchsize = 1).
-       - Loss is irrespective of the xnonzero magnitude.
-       - We will always use all nonzero entries, even if the training
-       instance is very non-sparse.
-"""
-
-
-import numpy
-
-nonzero_instances = []
-nonzero_instances.append({1: 0.1, 5: 0.5, 9: 1})
-nonzero_instances.append({2: 0.3, 5: 0.5, 8: 0.8})
-nonzero_instances.append({1: 0.2, 2: 0.3, 5: 0.5})
-
-import model
-model = model.Model()
-
-for i in xrange(100000):
-    # Select an instance
-    instance = nonzero_instances[i % len(nonzero_instances)]
-
-    # SGD update over instance
-    model.update(instance)
--- a/sparse_random_autoassociator/model.py	Tue Jul 08 18:45:35 2008 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,76 +0,0 @@
-"""
-The model for an autoassociator for sparse inputs, using Ronan Collobert + Jason
-Weston's sampling trick (2008).
-"""
-
-from graph import trainfn
-import parameters
-
-import globals
-from globals import LR
-
-import numpy
-import random
-random.seed(globals.SEED)
-
-def _select_indices(instance):
-    """
-    Choose nonzero and zero indices (feature columns) of the instance.
-    We select B{all} nonzero indices.
-    We select L{globals.ZERO_SAMPLE_SIZE} zero indices randomly,
-    without replacement.
-    @bug: If there are not ZERO_SAMPLE_SIZE zeroes, we will enter
-    an endless loop.
-    @return: (nonzero_indices, zero_indices)
-    """
-    # Get the nonzero indices
-    nonzero_indices = instance.keys()
-    nonzero_indices.sort()
-
-    # Get the zero indices
-    # @bug: If there are not ZERO_SAMPLE_SIZE zeroes, we will enter an endless loop.
-    zero_indices = []
-    while len(zero_indices) < globals.ZERO_SAMPLE_SIZE:
-        idx = random.randint(0, globals.INPUT_DIMENSION - 1)
-        if idx in nonzero_indices or idx in zero_indices: continue
-        zero_indices.append(idx)
-    zero_indices.sort()
-
-    return (nonzero_indices, zero_indices)
-
-class Model:
-    def __init__(self):
-        self.parameters = parameters.Parameters(randomly_initialize=True)
-
-    def update(self, instance):
-        """
-        Update the L{Model} using one training instance.
-        @param instance: A dict from feature index to (non-zero) value.
-        @todo: Should assert that nonzero_indices and zero_indices
-        are correct (i.e. are truly nonzero/zero).
-        """
-        (nonzero_indices, zero_indices) = _select_indices(instance)
-        # No update if there aren't any non-zeros.
-        if len(nonzero_indices) == 0: return
-        xnonzero = numpy.asarray([instance[idx] for idx in nonzero_indices])
-        print
-        print "xnonzero:", xnonzero
-
-        (ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = trainfn(xnonzero, self.parameters.w1[nonzero_indices, :], self.parameters.b1, self.parameters.w2[:, nonzero_indices], self.parameters.w2[:, zero_indices], self.parameters.b2[nonzero_indices], self.parameters.b2[zero_indices])
-        print "OLD ynonzero:", ynonzero
-        print "OLD yzero:", yzero
-        print "OLD total loss:", loss
-
-        # SGD update
-        self.parameters.w1[nonzero_indices, :]  -= LR * gw1nonzero
-        self.parameters.b1						-= LR * gb1
-        self.parameters.w2[:, nonzero_indices]  -= LR * gw2nonzero
-        self.parameters.w2[:, zero_indices]		-= LR * gw2zero
-        self.parameters.b2[nonzero_indices]		-= LR * gb2nonzero
-        self.parameters.b2[zero_indices]		-= LR * gb2zero
-
-        # Recompute the loss, to make sure it's descreasing
-        (ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = trainfn(xnonzero, self.parameters.w1[nonzero_indices, :], self.parameters.b1, self.parameters.w2[:, nonzero_indices], self.parameters.w2[:, zero_indices], self.parameters.b2[nonzero_indices], self.parameters.b2[zero_indices])
-        print "NEW ynonzero:", ynonzero
-        print "NEW yzero:", yzero
-        print "NEW total loss:", loss
--- a/sparse_random_autoassociator/parameters.py	Tue Jul 08 18:45:35 2008 -0400
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,28 +0,0 @@
-"""
-Parameters (weights) used by the L{Model}.
-"""
-
-import numpy
-import globals
-
-class Parameters:
-    """
-    Parameters used by the L{Model}.
-    """
-    def __init__(self, input_dimension=globals.INPUT_DIMENSION, hidden_dimension=globals.HIDDEN_DIMENSION, randomly_initialize=False, seed=globals.SEED):
-        """
-        Initialize L{Model} parameters.
-        @param randomly_initialize: If True, then randomly initialize
-        according to the given seed. If False, then just use zeroes.
-        """
-        if randomly_initialize:
-            numpy.random.seed(seed)
-            self.w1 = (numpy.random.rand(input_dimension, hidden_dimension)-0.5)/input_dimension
-            self.w2 = (numpy.random.rand(hidden_dimension, input_dimension)-0.5)/hidden_dimension
-            self.b1 = numpy.zeros(hidden_dimension)
-            self.b2 = numpy.zeros(input_dimension)
-        else:
-            self.w1 = numpy.zeros((input_dimension, hidden_dimension))
-            self.w2 = numpy.zeros((hidden_dimension, input_dimension))
-            self.b1 = numpy.zeros(hidden_dimension)
-            self.b2 = numpy.zeros(input_dimension)