Mercurial > pylearn
changeset 772:33f46eee4a96
added more test for the FillMissing op.
author | Frederic Bastien <bastienf@iro.umontreal.ca> |
---|---|
date | Wed, 10 Jun 2009 13:43:27 -0400 |
parents | 72730f38d1fb |
children | a25d2229a091 |
files | pylearn/sandbox/test_scan_inputs_groups.py |
diffstat | 1 files changed, 82 insertions(+), 23 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/sandbox/test_scan_inputs_groups.py Wed Jun 10 13:42:56 2009 -0400 +++ b/pylearn/sandbox/test_scan_inputs_groups.py Wed Jun 10 13:43:27 2009 -0400 @@ -7,38 +7,97 @@ from theano import function, Mode import theano.tensor as T -from pylearn.sandbox.scan_inputs_groups import FillMissing - - -if __name__ == '__main__': - t = TestConvOp("test_convolution") - t.test_convolution() - t.test_multilayer_conv() - from theano.tests import main - main("test_sp") +from pylearn.sandbox.scan_inputs_groups2 import FillMissing class TestFillMissing(unittest.TestCase): def setUp(self): utt.seed_rng() - def test_base(self): + def test_vector(self): + n=100000 v=T.dvector() + def t(prob,val,fill): + op=FillMissing(fill)(v) + f=function([v],op) + nb_missing=0 + for i in range(n): + if prob[i]<0.1: + nb_missing+=1 + val[i]=N.nan + out=f(val) + for i in range(n): + if N.isnan(val[i]): + if isinstance(fill,N.ndarray): + assert out[0][i]==fill[i] + else: + assert out[0][i]==fill + else: + assert out[1][i]==1 + + prob=N.random.random(n) + val=N.random.random(n) + + fill=0 + t(prob,val,fill)#test with fill a constant + + fill=N.random.random(n) + t(prob,val,fill)#test with fill a vector + +#TODO: test fill_with_array! + def test_matrix(self): + shp=(100,100) + v=T.dmatrix() op=FillMissing()(v) fct=function([v],op) - prob=N.random.random(1000) - val=N.random.random(len(prob)) + prob=N.random.random(N.prod(shp)).reshape(shp) + val=N.random.random(shp) nb_missing=0 - for i in range(len(val)): - if prob[i]<0.1: - nb_missing+=1 - val[i]=N.nan + for i in range(shp[0]): + for j in range(shp[1]): + if prob[i,j]<0.1: + nb_missing+=1 + val[i,j]=N.nan out=fct(val) - for i in range(len(prob)): - if N.isnan(val[i]): - assert out[0][i]==0 - assert out[1][i]==0 - else: - assert out[1][i]==1 - + for i in range(shp[0]): + for j in range(shp[1]): + if N.isnan(val[i,j]): + assert out[0][i,j]==0 + assert out[1][i,j]==0 + else: + assert out[1][i,j]==1 + +#TODO: test fill_with_array! + def test_matrix3d(self): + shp=(100,100,100) + v= T.TensorType('float64', (False, False, False))() + op=FillMissing()(v) + fct=function([v],op) + + prob=N.random.random(N.prod(shp)).reshape(shp) + val=N.random.random(prob.shape) + nb_missing=0 + for i in range(shp[0]): + for j in range(shp[1]): + for k in range(shp[2]): + if prob[i,j,k]<0.1: + nb_missing+=1 + val[i,j,k]=N.nan + + out=fct(val) + for i in range(shp[0]): + for j in range(shp[1]): + for k in range(shp[2]): + if N.isnan(val[i,j,k]): + assert out[0][i,j,k]==0 + assert out[1][i,j,k]==0 + else: + assert out[1][i,j,k]==1 + +if __name__ == '__main__': + t = TestFillMissing("test_vector") + t.test_vector() +# from theano.tests import main +# main("test_sp") +