Mercurial > pylearn
changeset 870:2fffbfa41920
merge
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Tue, 10 Nov 2009 17:59:54 -0500 |
parents | 6298876b2b01 (current diff) c3e7ae2bdb4b (diff) |
children | fafe796ad5ff |
files | |
diffstat | 4 files changed, 10 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/dataset_ops/cifar10.py Mon Nov 09 14:55:08 2009 -0500 +++ b/pylearn/dataset_ops/cifar10.py Tue Nov 10 17:59:54 2009 -0500 @@ -13,7 +13,7 @@ import theano from protocol import TensorFnDataset # protocol.py __init__.py -from .memo import memo +from .memo import memo # memo.py def _unpickle(filename, dtype): #implements loading as well as dtype-conversion and dtype-scaling
--- a/pylearn/dataset_ops/memo.py Mon Nov 09 14:55:08 2009 -0500 +++ b/pylearn/dataset_ops/memo.py Tue Nov 10 17:59:54 2009 -0500 @@ -20,6 +20,7 @@ def forget(): for k in cache.keys(): del cache[k] + rval.cache = cache rval.forget = forget rval.__name__ = 'memo@%s'%f.__name__ return rval
--- a/pylearn/shared/layers/lecun1998.py Mon Nov 09 14:55:08 2009 -0500 +++ b/pylearn/shared/layers/lecun1998.py Tue Nov 10 17:59:54 2009 -0500 @@ -96,8 +96,12 @@ w_shp = (n_filters, n_imgs) + filter_shape b_shp = (n_filters,) - w = shared(numpy.asarray(rng.uniform(low=-.05, high=.05, size=w_shp), dtype=dtype)) - b = shared(numpy.asarray(rng.uniform(low=-.05, high=.05, size=b_shp), dtype=dtype)) + #TODO: make w_range a parameter to new as well? + w_range = (-1.0 / numpy.sqrt(filter_shape[0] * filter_shape[1] * n_imgs), + 1.0 / numpy.sqrt(filter_shape[0] * filter_shape[1] * n_imgs)) + + w = shared(numpy.asarray(rng.uniform(low=w_range[0], high=w_range[1], size=w_shp), dtype=dtype)) + b = shared(numpy.asarray(rng.uniform(low=-.0, high=0., size=b_shp), dtype=dtype)) if isinstance(squash_fn, str): squash_fn = squash(squash_fn)
--- a/pylearn/shared/layers/rust2005.py Mon Nov 09 14:55:08 2009 -0500 +++ b/pylearn/shared/layers/rust2005.py Tue Nov 10 17:59:54 2009 -0500 @@ -241,8 +241,8 @@ b_shp = (n_filters,) if w_range is None: - w_low = -2.0/numpy.sqrt(image_shape[0] * image_shape[1]) - w_high = 2.0/numpy.sqrt(image_shape[0] * image_shape[1]) + w_low = -2.0/numpy.sqrt(image_shape[0] * image_shape[1] * n_channels) + w_high = 2.0/numpy.sqrt(image_shape[0] * image_shape[1] * n_channels) else: w_low, w_high = w_range