Mercurial > pylearn
changeset 895:257a39cce72c
Provides a ``Dataset`` for the nist reshuffled digits dataset.
author | Pierre-Antoine Manzagol <pierre.antoine.manzagol@gmail.com> |
---|---|
date | Fri, 05 Feb 2010 11:53:48 -0500 |
parents | 032911ac4941 |
children | 4e3a3d9fef43 |
files | pylearn/datasets/nist_sd.py |
diffstat | 1 files changed, 56 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pylearn/datasets/nist_sd.py Fri Feb 05 11:53:48 2010 -0500 @@ -0,0 +1,56 @@ +""" +Provides a Dataset to access the nist digits_reshuffled dataset. +""" + +import os, numpy +from pylearn.io import filetensor as ft +from pylearn.datasets.config import data_root # config +from pylearn.datasets.dataset import Dataset + + +def load(dataset = 'train', attribute = 'data'): + """Load the filetensor corresponding to the set and attribute. + + :param dataset: str that is 'train', 'valid' or 'test' + :param attribute: str that is 'data' or 'labels' + """ + fn = 'digits_reshuffled_' + dataset + '_' + attribute + '.ft' + fn = os.path.join(data_root(), 'nist', 'by_class', 'digits_reshuffled', fn) + + fd = open(fn) + data = ft.read(fd) + fd.close() + + return data + +def train_valid_test(ntrain=285661, nvalid=58646, ntest=58646, path=None): + """ + Load the nist reshuffled digits dataset as a Dataset. + + @note: the examples are uint8 and the labels are int32. + @todo: possibility of loading part of the data. + """ + rval = Dataset() + + # + rval.n_classes = 10 + rval.img_shape = (32,32) + + # train + examples = load(dataset = 'train', attribute = 'data') + labels = load(dataset = 'train', attribute = 'labels') + rval.train = Dataset.Obj(x=examples[:ntrain], y=labels[:ntrain]) + + # valid + examples = load(dataset = 'valid', attribute = 'data') + labels = load(dataset = 'valid', attribute = 'labels') + rval.valid = Dataset.Obj(x=examples[:nvalid], y=labels[:nvalid]) + + # test + examples = load(dataset = 'test', attribute = 'data') + labels = load(dataset = 'test', attribute = 'labels') + rval.test = Dataset.Obj(x=examples[:ntest], y=labels[:ntest]) + + return rval + +