Mercurial > pylearn
changeset 605:20953adfdef8
initial tzanetakis dataset
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Thu, 15 Jan 2009 22:21:04 -0500 |
parents | 28f7dc848efc |
children | e4a92dce13fe |
files | pylearn/datasets/tzanetakis.py |
diffstat | 1 files changed, 102 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pylearn/datasets/tzanetakis.py Thu Jan 15 22:21:04 2009 -0500 @@ -0,0 +1,102 @@ +""" +Load Tzanetakis' genre-classification dataset. + +""" +from __future__ import absolute_import + +import os +import numpy + +from ..io.amat import AMat +from .config import data_root +from .dataset import dataset_factory, Dataset + +def head(n=10, path=None): + """Load the first MNIST examples. + + Returns two matrices: x, y. x has N rows of 784 columns. Each row of x represents the + 28x28 grey-scale pixels in raster order. y is a vector of N integers. Each element y[i] + is the label of the i'th row of x. + + """ + path = os.path.join(data_root(), 'mnist','mnist_with_header.amat') if path is None else path + + dat = AMat(path=path, head=n) + + try: + assert dat.input.shape[0] == n + assert dat.target.shape[0] == n + except Exception , e: + raise Exception("failed to read MNIST data", (dat, e)) + + return dat.input, numpy.asarray(dat.target, dtype='int64').reshape(dat.target.shape[0]) + +def all(path=None): + return head(n=None, path=path) + +def train_valid_test(ntrain=50000, nvalid=10000, ntest=10000, path=None): + all_x, all_targ = head(ntrain+nvalid+ntest, path=path) + + rval = Dataset() + + rval.train = Dataset.Obj(x=all_x[0:ntrain], + y=all_targ[0:ntrain]) + rval.valid = Dataset.Obj(x=all_x[ntrain:ntrain+nvalid], + y=all_targ[ntrain:ntrain+nvalid]) + rval.test = Dataset.Obj(x=all_x[ntrain+nvalid:ntrain+nvalid+ntest], + y=all_targ[ntrain+nvalid:ntrain+nvalid+ntest]) + + rval.n_classes = 10 + rval.img_shape = (28,28) + return rval + + +def mfcc16(segments_per_song = 1, include_covariance = True, random_split = 0, + ntrain = 700, nvalid = 100, ntest = 200): + if segments_per_song != 1: + raise NotImplementedError() + + path = os.path.join(data_root(), 'tzanetakis','feat_mfcc16_540_1.stat.amat') + dat = AMat(path=path) + all_input = dat.input + assert all_input.shape == (1000 * segments_per_song, 152) + all_targ = numpy.tile(numpy.arange(10).reshape(10,1), 100 * segments_per_song)\ + .reshape(1000 * segments_per_song) + + if not include_covariance: + all_input = all_input[:,0:16] + + #shuffle the data according to the random split + assert all_input.shape[0] == all_targ.shape[0] + seed = random_split + 1 + numpy.random.RandomState(seed).shuffle(all_input) + numpy.random.RandomState(seed).shuffle(all_targ) + + #construct a dataset to return + rval = Dataset() + + rval.train = Dataset.Obj(x=all_input[0:ntrain], + y=all_targ[0:ntrain]) + rval.valid = Dataset.Obj(x=all_input[ntrain:ntrain+nvalid], + y=all_targ[ntrain:ntrain+nvalid]) + rval.test = Dataset.Obj(x=all_input[ntrain+nvalid:ntrain+nvalid+ntest], + y=all_targ[ntrain+nvalid:ntrain+nvalid+ntest]) + + rval.n_classes = 10 + + return rval + + + + +def mnist_factory(variant="", ntrain=None, nvalid=None, ntest=None): + if variant=="": + return train_valid_test() + elif variant=="1k": + return train_valid_test(ntrain=1000, nvalid=200, ntest=200) + elif variant=="10k": + return train_valid_test(ntrain=10000, nvalid=2000, ntest=2000) + elif variant=="custom": + return train_valid_test(ntrain=ntrain, nvalid=nvalid, ntest=ntest) + else: + raise Exception('Unknown MNIST variant', variant)