Mercurial > pylearn
changeset 660:12b1b09ffd2b
Added preliminary code for computing negative log Poisson cost
author | Joseph Turian <turian@gmail.com> |
---|---|
date | Mon, 09 Mar 2009 03:11:20 -0400 |
parents | 85436cda77ba |
children | d8ad0ce259a6 |
files | pylearn/algorithms/sandbox/cost.py pylearn/algorithms/sandbox/test_cost.py |
diffstat | 2 files changed, 52 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/algorithms/sandbox/cost.py Mon Mar 09 00:25:46 2009 -0400 +++ b/pylearn/algorithms/sandbox/cost.py Mon Mar 09 03:11:20 2009 -0400 @@ -45,9 +45,12 @@ def nlpoisson(target, output, beta_scale=1, axis=0): """ The negative log Poisson regression probability. - From Marc'Aurelio and Szummer (2008). + From Ranzato and Szummer (2008). Output should be of the form Weight*code+bias, i.e. unsquashed. + NB this is different than the formulation in Salakhutdinov and Hinton + (2007), in which the output is softmax'ed and multiplied by the + input document length. There is a beta term that is proportional to document length. We are not sure what beta scale is used by the authors. We use 1 as @@ -55,7 +58,37 @@ Axis is the axis along which we sum the target values, to obtain the document length. - @bug: This axis may be wrong!! """ - beta = beta_scale * T.sum(target, axis=axis) - return beta * T.exp(output) - T.dot(target, output) + logfactorial(target) +# from theano.printing import Print + doclen = tensor.sum(target, axis=axis) + beta = beta_scale * doclen + return tensor.sum(beta * tensor.exp(output) - target*output + logfactorial(target), axis=axis) + + +#import numpy +#def nlpoisson_nontheano(target, output, beta_scale=1, axis=0): +# doclen = numpy.sum(target, axis=axis) +# print "doclen", doclen +# beta = beta_scale * doclen +# print "beta", beta +# print "exp", numpy.exp(output) +# print "beta * exp", beta * numpy.exp(output) +# print "x * y", target * output +# +# import theano.tensor as TT +# x = TT.as_tensor(target) +# o = logfactorial(x) +# f = T.function([],o) +# logf = f() +# print "log factorial(x)", logf +# print "beta * exp - dot + log factorial", beta * numpy.exp(output) - target*output + f() +# print "total loss", numpy.sum(beta * numpy.exp(output) - target*output + f(), axis=axis) +# +## return beta * numpy.exp(output) - numpy.dot(target, output) +## #+ logfactorial(target) +# +#import numpy +#target = numpy.array([0, 0, 1, 1, 2, 2, 100, 100]) +##output = numpy.array([0., 0.5, 1., 0.5, 2., 0.5, 100., 0.5]) +#output = numpy.array([0., 1, 1., 0, 1, 0, 5, 1]) +#nlpoisson_nontheano(target, output)
--- a/pylearn/algorithms/sandbox/test_cost.py Mon Mar 09 00:25:46 2009 -0400 +++ b/pylearn/algorithms/sandbox/test_cost.py Mon Mar 09 03:11:20 2009 -0400 @@ -22,5 +22,20 @@ # print repr(f()) self.failUnless(numpy.all(f() == numpy.asarray([0., 0., 1.38629436, 3.29583687, 5.54517744, 8.04718956, 10.75055682, 13.62137104, 16.63553233, 19.7750212]))) +class T_nlpoisson(unittest.TestCase): + def test(self): + target = TT.as_tensor([0, 0, 1, 1, 2, 2, 100, 100]) + output = TT.as_tensor([0., 1, 1., 0, 1, 0, 5, 1]) + o = cost.nlpoisson(target, output) + f = T.function([],o) + self.failUnless(f() - 33751.7816277 < 1e-5) + +# def test_gradient(self): +# target = TT.as_tensor([0, 0, 1, 1, 2, 2, 100, 100]) +# output = TT.as_tensor([0., 1, 1., 0, 1, 0, 5, 1]) +# o = cost.nlpoisson(target, output) +# f = T.function([],o) +# self.failUnless(f() - 33751.7816277 < 1e-5) + if __name__ == '__main__': unittest.main()