Mercurial > pylearn
changeset 667:719194960d18
merge
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Mon, 30 Mar 2009 12:26:01 -0400 |
parents | d69e668ab904 (diff) 070a7d68d3a1 (current diff) |
children | 15a317a02f08 |
files | |
diffstat | 3 files changed, 96 insertions(+), 40 deletions(-) [+] |
line wrap: on
line diff
--- a/pylearn/algorithms/minimizer.py Wed Mar 11 11:13:29 2009 -0400 +++ b/pylearn/algorithms/minimizer.py Mon Mar 30 12:26:01 2009 -0400 @@ -1,10 +1,8 @@ """Define the interface and factory for gradient-based minimizers. """ -from theano.compile import module +import theano -_minimizers = {} - -class DummyMinimizer(module.FancyModule): +class DummyMinimizer(theano.Module): """ The idea of a minimizer is that it provides an `step` function that will eventually converge toward (maybe realize?) the minimum of a cost function. @@ -15,29 +13,24 @@ """ def __init__(self, args, cost, parameters, gradients=None): super(DummyMinimizer, self).__init__() - #gradients = T.grad(cost, parameters) if gradients is None else gradients - #self.step = module.Method(args, None) - #self.step_cost = module.Method(args, cost) + def _instance_step(self, obj, *args): - pass - def _instance_step_cost(self, obj, *args): + """Move the parameters toward the minimum of a cost + + :param args: The arguments here should be values for the Variables that were in the + `args` argument to the constructor. + + :Return: None + """ pass -def minimizer_factory(algo): - def decorator(fn): - if algo in _minimizers: - raise Exception('algo in use', algo) - else: - _minimizers[algo] = fn - return fn - return decorator + def _instance_step_cost(self, obj, *args): + """Move the parameters toward the minimum of a cost, and compute the cost -@minimizer_factory('dummy') -def dummy_minimizer(): - def m(args, cost, parameters, gradients=None): - return DummyMinimizer(args, cost, parameters, gradients) - return m + :param args: The arguments here should be values for the Variables that were in the + `args` argument to the constructor. -def make_minimizer(algo, **kwargs): - return _minimizers[algo](**kwargs) + :Return: The current cost value. + """ + pass
--- a/pylearn/algorithms/sgd.py Wed Mar 11 11:13:29 2009 -0400 +++ b/pylearn/algorithms/sgd.py Mon Mar 30 12:26:01 2009 -0400 @@ -1,45 +1,40 @@ """A stochastic gradient descent minimizer. (Possibly the simplest minimizer.) """ -from theano.compile import module -from theano import tensor as T +import theano -class StochasticGradientDescent(module.FancyModule): +class StochasticGradientDescent(theano.Module): """Fixed stepsize gradient descent""" def __init__(self, args, cost, params, gradients=None, stepsize=None): """ :param stepsize: the step to take in (negative) gradient direction - :type stepsize: None, scalar value, or scalar TensorResult + :type stepsize: None, scalar value, or scalar TensorVariable """ super(StochasticGradientDescent, self).__init__() self.stepsize_init = None if stepsize is None: - self.stepsize = module.Member(T.dscalar()) - elif isinstance(stepsize, T.TensorResult): + self.stepsize = theano.tensor.dscalar() + elif isinstance(stepsize, theano.tensor.TensorVariable): self.stepsize = stepsize else: - self.stepsize = module.Member(T.value(stepsize)) + self.stepsize = (theano.tensor.as_tensor_variable(stepsize)) if self.stepsize.ndim != 0: - raise ValueError('stepsize must be a scalar', stepsize) + raise TypeError('stepsize must be a scalar', stepsize) self.params = params - self.gparams = T.grad(cost, self.params) if gradients is None else gradients + self.gparams = theano.tensor.grad(cost, self.params) if gradients is None else gradients self.updates = dict((p, p - self.stepsize * g) for p, g in zip(self.params, self.gparams)) - self.step = module.Method( + self.step = theano.Method( args, [], updates=self.updates) - self.step_cost = module.Method( + self.step_cost = theano.Method( args, cost, updates=self.updates) + def _instance_initialize(self, obj): pass -def sgd_minimizer(stepsize=None, **args): - def m(i,c,p,g=None): - return StochasticGradientDescent(i, c, p, stepsize=stepsize, **args) - return m -
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pylearn/algorithms/tests/test_sgd.py Mon Mar 30 12:26:01 2009 -0400 @@ -0,0 +1,68 @@ +import theano +from pylearn.algorithms import sgd + +def test_sgd0(): + + x = theano.tensor.dscalar('x') + y = theano.tensor.dscalar('y') + + M = sgd.StochasticGradientDescent([x], (1.0 - x * y)**2, [y], stepsize=0.01) + M.y = y + m = M.make() + m.y = 5.0 + for i in xrange(100): + c = m.step_cost(3.0) + # print c, m.y + + assert c < 1.0e-5 + assert abs(m.y - (1.0 / 3)) < 1.0e-4 + +def test_sgd_stepsize_variable(): + + x = theano.tensor.dscalar('x') + y = theano.tensor.dscalar('y') + lr = theano.tensor.dscalar('lr') + + M = sgd.StochasticGradientDescent([x], (1.0 - x * y)**2, [y], stepsize=lr) + M.y = y + M.lr = lr + m = M.make() + m.y = 5.0 + m.lr = 0.01 + for i in xrange(100): + c = m.step_cost(3.0) + # print c, m.y + + assert c < 1.0e-5 + assert abs(m.y - (1.0 / 3)) < 1.0e-4 + + + #test that changing the lr has impact + + m.y = 5.0 + m.lr = 0.0 + for i in xrange(10): + c = m.step_cost(3.0) + # print c, m.y + + assert m.y == 5.0 + +def test_sgd_stepsize_none(): + + x = theano.tensor.dscalar('x') + y = theano.tensor.dscalar('y') + + M = sgd.StochasticGradientDescent([x], (1.0 - x * y)**2, [y]) + M.y = y + m = M.make() + m.y = 5.0 + #there should be a learning rate here by default + assert m.stepsize is None + m.stepsize = 0.01 + for i in xrange(100): + c = m.step_cost(3.0) + # print c, m.y + + assert c < 1.0e-5 + assert abs(m.y - (1.0 / 3)) < 1.0e-4 +