# HG changeset patch # User James Bergstra # Date 1282150787 14400 # Node ID faa658da89c2b2546ca5b756baa297a36c7ba290 # Parent cafa16bfc7df7b741f3e9a49b4c8b64766715914 tweaks to image_tiling diff -r cafa16bfc7df -r faa658da89c2 pylearn/io/image_tiling.py --- a/pylearn/io/image_tiling.py Wed Aug 11 14:35:57 2010 -0400 +++ b/pylearn/io/image_tiling.py Wed Aug 18 12:59:47 2010 -0400 @@ -11,7 +11,8 @@ ndar *= 1.0 / (ndar.max()+eps) return ndar -def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0,0), +def tile_raster_images(X, img_shape, + tile_shape=None, tile_spacing=(1,1), scale_rows_to_unit_interval=True, output_pixel_vals=True ): @@ -27,16 +28,26 @@ :type img_shape: tuple; (height, width) :param img_shape: the original shape of each image :type tile_shape: tuple; (rows, cols) - :param tile_shape: the number of images to tile (rows, cols) + :param tile_shape: the number of images to tile (rows, cols) (Defaults to a square-ish + shape with the right area for the number of images) :returns: array suitable for viewing as an image. (See:`PIL.Image.fromarray`.) :rtype: a 2-d array with same dtype as X. """ + if isinstance(X, tuple): + n_images_in_x = X[0].shape[0] + else: + n_images_in_x = X.shape[0] + + if tile_shape is None: + tile_shape = most_square_shape(n_images_in_x) + assert len(img_shape) == 2 assert len(tile_shape) == 2 assert len(tile_spacing) == 2 + #out_shape is the shape in pixels of the returned image array out_shape = [(ishp + tsp) * tshp - tsp for ishp, tshp, tsp in zip(img_shape, tile_shape, tile_spacing)] @@ -82,3 +93,19 @@ return out_array +def most_square_shape(N): + """rectangle (height, width) with area N that is closest to sqaure + """ + for i in xrange(int(numpy.sqrt(N)),0, -1): + if 0 == N % i: + return (i, N/i) + +def save_tiled_raster_images(tiled_img, filename): + """Save a a return value from `tile_raster_images` to `filename`. + + Returns the PIL image that was saved + """ + img = Image.fromarray( tiled_img, 'RGBA') + img.save(filename) + return img +