# HG changeset patch # User James Bergstra # Date 1282332553 14400 # Node ID bc22f739b54ccdec67f8efab95d4841feb590e52 # Parent c96dc085b5b7afa8136c9bcd3c9681fed4062a3f image_tiling - added dynamic_range parameter to avoid amplifying noise diff -r c96dc085b5b7 -r bc22f739b54c pylearn/io/image_tiling.py --- a/pylearn/io/image_tiling.py Fri Aug 20 15:28:28 2010 -0400 +++ b/pylearn/io/image_tiling.py Fri Aug 20 15:29:13 2010 -0400 @@ -8,13 +8,14 @@ def scale_to_unit_interval(ndar,eps=1e-8): ndar = ndar.copy() ndar -= ndar.min() - ndar *= 1.0 / (ndar.max()+eps) + ndar *= 1.0 / max(ndar.max(),eps) return ndar def tile_raster_images(X, img_shape, tile_shape=None, tile_spacing=(1,1), scale_rows_to_unit_interval=True, - output_pixel_vals=True + output_pixel_vals=True, + min_dynamic_range=1e-4, ): """ Transform an array with one flattened image per row, into an array in which images are @@ -30,6 +31,10 @@ :type tile_shape: tuple; (rows, cols) :param tile_shape: the number of images to tile (rows, cols) (Defaults to a square-ish shape with the right area for the number of images) + :type min_dynamic_range: positive float + :param min_dynamic_range: the dynamic range of each image is used in scaling to the unit + interval, but images with less dynamic range than this will be scaled as if this were + the dynamic range. :returns: array suitable for viewing as an image. (See:`PIL.Image.fromarray`.) :rtype: a 2-d array with same dtype as X. @@ -82,7 +87,9 @@ for tile_col in xrange(tile_shape[1]): if tile_row * tile_shape[1] + tile_col < X.shape[0]: if scale_rows_to_unit_interval: - this_img = scale_to_unit_interval(X[tile_row * tile_shape[1] + tile_col].reshape(img_shape)) + this_img = scale_to_unit_interval( + X[tile_row * tile_shape[1] + tile_col].reshape(img_shape), + eps=min_dynamic_range) else: this_img = X[tile_row * tile_shape[1] + tile_col].reshape(img_shape) out_array[