# HG changeset patch # User bengioy@bengiomac.local # Date 1206581888 14400 # Node ID 633453635d511f4e77c45f7ddd7e676e98888963 # Parent ff4e551490f1a5501beadb889d07cca7cb0737d4 Starting to work on gradient_based_learner.py diff -r ff4e551490f1 -r 633453635d51 gradient_learner.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/gradient_learner.py Wed Mar 26 21:38:08 2008 -0400 @@ -0,0 +1,40 @@ + +from learner import * +from tensor import * +import gradient +from compile import Function +from gradient_based_optimizer import * + +class GradientLearner(Learner): + """ + Generic Learner for gradient-based optimization of a training criterion + that can consist in two parts, an additive part over examples, and + an example-independent part (usually called the regularizer). + The user provides a Theano formula that maps the fields of a training example + and parameters to output fields (for the use function), one of which must be a cost + that is the training criterion to be minimized. The user also provides + a GradientBasedOptimizer that implements the optimization strategy. + The inputs, parameters, outputs and lists of Theano tensors, + while the example_wise_cost and regularization_term are Theano tensors. + The user can specify a regularization coefficient that multiplies the regularization term. + The training algorithm looks for parameters that minimize + regularization_coefficienet * regularization_term(parameters) + + sum_{inputs in training_set} example_wise_cost(inputs,parameters) + i.e. the regularization_term should not depend on the inputs, only on the parameters. + The learned function can map a subset of inputs to a subset of outputs (as long as the inputs subset + includes all the inputs required in the Theano expression for the selected outputs). + """ + def __init__(self, inputs, parameters, outputs, example_wise_cost, regularization_term, + gradient_based_optimizer=StochasticGradientDescent(), regularization_coefficient = astensor(1.0)): + self.inputs = inputs + self.outputs = outputs + self.parameters = parameters + self.example_wise_cost = example_wise_cost + self.regularization_term = regularization_term + self.gradient_based_optimizer = gradient_based_optimizer + self.regularization_coefficient = regularization_coefficient + self.parameters_example_wise_gradient = gradient.grad(example_wise_cost, parameters) + self.parameters_regularization_gradient = gradient.grad(self.regularization_coefficient * regularization, parameters) + +# def update(self,training_set): + diff -r ff4e551490f1 -r 633453635d51 learner.py --- a/learner.py Wed Mar 26 18:21:57 2008 -0400 +++ b/learner.py Wed Mar 26 21:38:08 2008 -0400 @@ -1,6 +1,5 @@ from dataset import * -from statscollector import * class Learner(object): """Base class for learning algorithms, provides an interface @@ -32,7 +31,7 @@ The result is a function that can be applied on data, with the same semantics of the Learner.use method. """ - return self.use + return self.use # default behavior is 'non-adaptive', i.e. update does not do anything def __call__(self,training_set):