# HG changeset patch # User Frederic Bastien # Date 1212524022 14400 # Node ID 6226ebafefc399b2520c9c58f6f2dac6a26dd3e6 # Parent 19b14afe04b72f919bb5f3112b05a4682a1515ce# Parent 38e7d90a12186ecf6798efcc58e8a4b49b69b7c3 Automated merge with ssh://projects@lgcm.iro.umontreal.ca/hg/pylearn diff -r 19b14afe04b7 -r 6226ebafefc3 dataset.py --- a/dataset.py Tue Jun 03 16:06:21 2008 -0400 +++ b/dataset.py Tue Jun 03 16:13:42 2008 -0400 @@ -1055,32 +1055,30 @@ return self.__dict__[key] def __iter__(self): - class ArrayDataSetIterator2(object): - def __init__(self,dataset,fieldnames,minibatch_size,n_batches,offset): + class ArrayDataSetIteratorIter(object): + def __init__(self,dataset,fieldnames): if fieldnames is None: fieldnames = dataset.fieldNames() # store the resulting minibatch in a lookup-list of values self.minibatch = LookupList(fieldnames,[0]*len(fieldnames)) self.dataset=dataset - self.minibatch_size=minibatch_size - assert offset>=0 and offset=self.dataset.data.shape[0]: + if self.current>=self.l: raise StopIteration sub_data = self.dataset.data[self.current] self.minibatch._values = [sub_data[c] for c in self.columns] - self.current+=self.minibatch_size + self.current+=1 return self.minibatch - return ArrayDataSetIterator2(self,self.fieldNames(),1,0,0) + return ArrayDataSetIteratorIter(self,self.fieldNames()) def minibatches_nowrap(self,fieldnames,minibatch_size,n_batches,offset): class ArrayDataSetIterator(object):