Mercurial > pylearn
view algorithms/aa.py @ 496:f13847478c6d
A few more ideas, in comments
author | Joseph Turian <turian@gmail.com> |
---|---|
date | Tue, 28 Oct 2008 12:09:49 -0400 |
parents | 8fcd0f3d9a17 |
children |
line wrap: on
line source
import theano from theano import tensor as T from theano.tensor import nnet as NN import numpy as N class AutoEncoder(theano.FancyModule): def __init__(self, input = None, regularize = True, tie_weights = True): super(AutoEncoder, self).__init__() # MODEL CONFIGURATION self.regularize = regularize self.tie_weights = tie_weights # ACQUIRE/MAKE INPUT if not input: input = T.matrix('input') self.input = theano.External(input) # HYPER-PARAMETERS self.lr = theano.Member(T.scalar()) # PARAMETERS self.w1 = theano.Member(T.matrix()) if not tie_weights: self.w2 = theano.Member(T.matrix()) else: self.w2 = self.w1.T self.b1 = theano.Member(T.vector()) self.b2 = theano.Member(T.vector()) # HIDDEN LAYER self.hidden_activation = T.dot(input, self.w1) + self.b1 self.hidden = self.build_hidden() # RECONSTRUCTION LAYER self.output_activation = T.dot(self.hidden, self.w2) + self.b2 self.output = self.build_output() # RECONSTRUCTION COST self.reconstruction_cost = self.build_reconstruction_cost() # REGULARIZATION COST self.regularization = self.build_regularization() # TOTAL COST self.cost = self.reconstruction_cost if self.regularize: self.cost = self.cost + self.regularization # GRADIENTS AND UPDATES if self.tie_weights: self.params = self.w1, self.b1, self.b2 else: self.params = self.w1, self.w2, self.b1, self.b2 gradients = T.grad(self.cost, self.params) updates = dict((p, p - self.lr * g) for p, g in zip(self.params, gradients)) # INTERFACE METHODS self.update = theano.Method(input, self.cost, updates) self.reconstruction = theano.Method(input, self.output) self.representation = theano.Method(input, self.hidden) def _instance_initialize(self, obj, input_size = None, hidden_size = None, seed = None, **init): if (input_size is None) ^ (hidden_size is None): raise ValueError("Must specify hidden_size and target_size or neither.") super(AutoEncoder, self)._instance_initialize(obj, **init) if seed is not None: R = N.random.RandomState(seed) else: R = N.random if input_size is not None: sz = (input_size, hidden_size) range = 1/N.sqrt(input_size) obj.w1 = R.uniform(size = sz, low = -range, high = range) if not self.tie_weights: obj.w2 = R.uniform(size = list(reversed(sz)), low = -range, high = range) obj.b1 = N.zeros(hidden_size) obj.b2 = N.zeros(input_size) def build_regularization(self): return T.zero() # no regularization! class SigmoidXEAutoEncoder(AutoEncoder): def build_hidden(self): return NN.sigmoid(self.hidden_activation) def build_output(self): return NN.sigmoid(self.output_activation) def build_reconstruction_cost(self): self.reconstruction_cost_matrix = self.input * T.log(self.output) + (1.0 - self.input) * T.log(1.0 - self.output) self.reconstruction_costs = -T.sum(self.reconstruction_cost_matrix, axis=1) return T.sum(self.reconstruction_costs) def build_regularization(self): self.l2_coef = theano.Member(T.scalar()) if self.tie_weights: return self.l2_coef * T.sum(self.w1 * self.w1) else: return self.l2_coef * T.sum(self.w1 * self.w1) + T.sum(self.w2 * self.w2) def _instance_initialize(self, obj, input_size = None, hidden_size = None, **init): init.setdefault('l2_coef', 0) super(SigmoidXEAutoEncoder, self)._instance_initialize(obj, input_size, hidden_size, **init)