Mercurial > pylearn
view doc/v2_planning/API_learner.txt @ 1275:f0129e37a8ef
mcRBM - changed params from lambda to method for pickling
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Wed, 08 Sep 2010 13:18:13 -0400 |
parents | 317049b21b77 |
children |
line wrap: on
line source
.. _v2planning_learner: Learner API =========== A list of "task types" ---------------------- Attributes ~~~~~~~~~~ - sequential - spatial - structured - semi-supervised - missing-values Supervised (x,y) ~~~~~~~~~~~~~~~~ - classification - regression - probabilistic classification - ranking - conditional density estimation - collaborative filtering - ordinal regression ?= ranking Unsupervised (x) ~~~~~~~~~~~~~~~~ - de-noising - feature learning ( transformation ) PCA, DAA - density estimation - inference Other ~~~~~ - generation (sampling) - structure learning ??? Notes on metrics & statistics ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - some are applied to an example, others on a batch - most statistics are on the dataset The Learner class ----------------- .. code-block:: python class Learner(Object): ''' Takes data as inputs, and learns a prediction function (or several). A learner is parametrized by hyper-parameters, which can be set from the outside (a "client" from Learner, that can be a HyperLearner, a Tester,...). The data can be given all at a time as a data set, or incrementally. Some learner need to be fully trained in one step, whereas other can be trained incrementally. The question of statistics collection during training remains open. ''' #def use_dataset(dataset) # return a dictionary of hyperparameters names(keys) # and value(values) def get_hyper_parameters(): ... def set_hyper_parameters(dictionary): ... # Ver B def eval(dataset): ... def predict(dataset): ... # Trainable def train(dataset): # train until completion ... # Incremental def use_dataset(dataset): ... def adapt(n_steps=1): ... def has_converged(): ... # Some example cases ------------------ .. code-block:: python class HyperLearner(Learner): ### def get_hyper_parameter_distribution(name) def set_hyper_parameters_distribution(dictionary): ... def bagging(learner_factory): for i in range(N): learner_i = learner_factory.new() # todo: get dataset_i ?? learner_i.use_dataset(dataset_i) learner_i.train()