Mercurial > pylearn
view sandbox/simple_autoassociator/model.py @ 506:eda3d576ee97
removed n_out from smallnorb_iid rval
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Wed, 29 Oct 2008 17:20:18 -0400 |
parents | 4f61201fa9a9 |
children |
line wrap: on
line source
""" The model for an autoassociator for sparse inputs, using Ronan Collobert + Jason Weston's sampling trick (2008). """ from graph import trainfn import parameters import numpy import random import pylearn.sparse_instance class Model: """ @todo: Add momentum. @todo: Add learning rate decay schedule. """ def __init__(self, input_dimension, hidden_dimension, learning_rate = 0.1, weight_decay = 0.0002, random_seed = 666): self.input_dimension = input_dimension self.hidden_dimension = hidden_dimension self.learning_rate = learning_rate self.weight_decay = weight_decay self.random_seed = random_seed random.seed(random_seed) self.parameters = parameters.Parameters(input_dimension=self.input_dimension, hidden_dimension=self.hidden_dimension, randomly_initialize=True, random_seed=self.random_seed) def deterministic_reconstruction(self, x): (y, h, loss, gw1, gb1, gw2, gb2) = trainfn(x, self.parameters.w1, self.parameters.b1, self.parameters.w2, self.parameters.b2) return y def update(self, instances): """ Update the L{Model} using one training instance. @param instances: A list of dict from feature index to (non-zero) value. @todo: Should assert that nonzero_indices and zero_indices are correct (i.e. are truly nonzero/zero). @todo: Multiply L{self.weight_decay} by L{self.learning_rate}, as done in Semantic Hashing? @todo: Decay the biases too? """ minibatch = len(instances) x = pylearn.sparse_instance.to_vector(instances, self.input_dimension) (y, h, loss, gw1, gb1, gw2, gb2) = trainfn(x, self.parameters.w1, self.parameters.b1, self.parameters.w2, self.parameters.b2) # print # print "instance:", instance # print "x:", x # print "OLD y:", y print "OLD total loss:", loss # print "gw1:", gw1 # print "gb1:", gb1 # print "gw2:", gw2 # print "gb2:", gb2 self.parameters.w1 *= (1 - self.weight_decay) self.parameters.w2 *= (1 - self.weight_decay) # SGD update self.parameters.w1 -= self.learning_rate * gw1 / minibatch self.parameters.b1 -= self.learning_rate * gb1 / minibatch self.parameters.w2 -= self.learning_rate * gw2 / minibatch self.parameters.b2 -= self.learning_rate * gb2 / minibatch # # Recompute the loss, to make sure it's descreasing # (y, h, loss, gw1, gb1, gw2, gb2) = trainfn(x, self.parameters.w1, self.parameters.b1, self.parameters.w2, self.parameters.b2) ## print "NEW y:", y # print "NEW total loss:", loss ## print "h:", h ## print self.parameters