Mercurial > pylearn
view sandbox/simple_autoassociator/graph.py @ 425:e2b46a8f2b7b
Debugging kernel regression
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Sat, 19 Jul 2008 17:57:46 -0400 |
parents | 8849eba55520 |
children |
line wrap: on
line source
""" Theano graph for a simple autoassociator. @todo: Make nearly everything private. """ from pylearn.nnet_ops import sigmoid, binary_crossentropy from theano import tensor as t from theano.tensor import dot x = t.dmatrix() w1 = t.dmatrix() b1 = t.dvector() w2 = t.dmatrix() b2 = t.dvector() h = sigmoid(dot(x, w1) + b1) y = sigmoid(dot(h, w2) + b2) loss_unsummed = binary_crossentropy(y, x) loss = t.sum(loss_unsummed) (gw1, gb1, gw2, gb2) = t.grad(loss, [w1, b1, w2, b2]) import theano.compile inputs = [x, w1, b1, w2, b2] outputs = [y, h, loss, gw1, gb1, gw2, gb2] trainfn = theano.compile.function(inputs, outputs)