Mercurial > pylearn
view sandbox/simple_autoassociator/main.py @ 421:e01f17be270a
Kernel regression learning algorithm
author | Yoshua Bengio <bengioy@iro.umontreal.ca> |
---|---|
date | Sat, 19 Jul 2008 10:11:22 -0400 |
parents | 4f61201fa9a9 |
children |
line wrap: on
line source
#!/usr/bin/python """ A simple autoassociator. The learned model is:: h = sigmoid(dot(x, w1) + b1) y = sigmoid(dot(h, w2) + b2) Binary xent loss. """ import numpy nonzero_instances = [] nonzero_instances.append({0: 1, 1: 1}) nonzero_instances.append({0: 1, 2: 1}) #nonzero_instances.append({1: 0.1, 5: 0.5, 9: 1}) #nonzero_instances.append({2: 0.3, 5: 0.5, 8: 0.8}) ##nonzero_instances.append({1: 0.2, 2: 0.3, 5: 0.5}) import model model = model.Model(input_dimension=10, hidden_dimension=4) for i in xrange(100000): # # Select an instance # instance = nonzero_instances[i % len(nonzero_instances)] # Update over instance model.update(nonzero_instances)