Mercurial > pylearn
view sparse_random_autoassociator/graph.py @ 387:dace8b9743af
__str__ method
author | Joseph Turian <turian@gmail.com> |
---|---|
date | Tue, 08 Jul 2008 17:08:23 -0400 |
parents | edec18614a70 |
children |
line wrap: on
line source
""" Theano graph for an autoassociator for sparse inputs, which will be trained using Ronan Collobert + Jason Weston's sampling trick (2008). @todo: Make nearly everything private. """ from globals import MARGIN from pylearn.nnet_ops import sigmoid, binary_crossentropy from theano import tensor as t from theano.tensor import dot xnonzero = t.dvector() w1nonzero = t.dmatrix() b1 = t.dvector() w2nonzero = t.dmatrix() w2zero = t.dmatrix() b2nonzero = t.dvector() b2zero = t.dvector() h = sigmoid(dot(xnonzero, w1nonzero) + b1) ynonzero = sigmoid(dot(h, w2nonzero) + b2nonzero) yzero = sigmoid(dot(h, w2zero) + b2zero) # May want to weight loss wrt nonzero value? e.g. MARGIN violation for # 0.1 nonzero is not as bad as MARGIN violation for 0.2 nonzero. def hingeloss(MARGIN): return -MARGIN * (MARGIN < 0) nonzeroloss = hingeloss(ynonzero - t.max(yzero) - MARGIN) zeroloss = hingeloss(-t.max(-(ynonzero)) - yzero - MARGIN) # xnonzero sensitive loss: #nonzeroloss = hingeloss(ynonzero - t.max(yzero) - MARGIN - xnonzero) #zeroloss = hingeloss(-t.max(-(ynonzero - xnonzero)) - yzero - MARGIN) loss = t.sum(nonzeroloss) + t.sum(zeroloss) #loss = t.sum(binary_crossentropy(ynonzero, xnonzero)) + t.sum(binary_crossentropy(yzero, t.constant(0))) (gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero) = t.grad(loss, [w1nonzero, b1, w2nonzero, w2zero, b2nonzero, b2zero]) import theano.compile inputs = [xnonzero, w1nonzero, b1, w2nonzero, w2zero, b2nonzero, b2zero] outputs = [ynonzero, yzero, loss, gw1nonzero, gb1, gw2nonzero, gw2zero, gb2nonzero, gb2zero] trainfn = theano.compile.function(inputs, outputs)