view doc/v2_planning/plugin_RP_GD.py @ 1256:bf41991692ea

new plugin approach
author gdesjardins
date Fri, 24 Sep 2010 12:53:53 -0400
parents
children c88db30f4e08
line wrap: on
line source

####
# H1: everything works in term of iterator
#     everything has a step() and end() method
####

# Construct counter plugin that keeps track of number of epochs
class Counter(Plugin):

    def __init__(self, sch, name, threshold):
        super(self, Counter).__init__(sch, name)
        self.n = 0
        self.threshold = threshold

    def execute(self, msg):
        self.n += 1
        if self.n > self.threshold:
            self.fire(Event('terminate', value = self.n))

def fixed_epoch_trainer(model, save, n_epochs):
    sched = Scheduler()

    # define plugins 
    [model, validate, save] = map(pluggin_wrapper, [model, validate, save])

    counter = Counter(sched, 'epoch', n_epochs)

    # register actions
    model.act(sched, on=[sched.begin(), model.step(), counter.step()])
    counter.act(sched, on=model.end())
    save_model.act(sched, on=counter.end())

    sched.terminate(on=counter.end())

    return sched

def early_stop_trainer(model, validate, save, **kw):
    sched = Scheduler()

    # define plugins 
    [model, validate, save] = map(pluggin_wrapper, [model, validate, save])

    early_stop = Stopper(**kw)

    # register actions
    model.act(sched, on=[sched.begin(), model.step(), validate.step()])
    validate.act(sched, on=model.end())
    early_stop.act(sched, on=validate.step())
    save_model.act(sched, on=[early_stop.step(), early_stop.end()])

    sched.terminate(on=early_stop.end())

    return sched

def dbn_trainer(rbm1, rbm2):
    sched = Scheduler()

    pretrain_layer1 = fixed_epoch_trainer(rbm1, save)
    pretrain_layer1.act(sched, on=sched.begin())

    pretrain_layer2 = fixed_epoch_trainer(rbm2, save)
    pretrain_layer2.act(sched, on=pretrain_layer1.end())

    ## TBD: by the layer committee
    mlp = function(rbm1, rbm2)

    fine_tuning = early_stop_trainer(mlp, validate_mlp, save_mlp)
    fine_tuning.act(sched, on=pretrain_layer2.end())

    return sched

def single_crossval_run(trainer, kfold_plugin, kfold_measure)

    sched = Scheduler()

    # k-fold plugin will call rbm.change_dataset using various splits of the data
    kfold_plugin.act(sched, on=[sched.begin(), trainer.end()])
    trainer.act(sched, on=[kfold_plugin.step()])

    # trainer terminates on early_stop.end(). This means that trainer.end() will forward
    # the early-stopping message which contains the best validation error.
    kfold_measure.act(sched, on=[trainer.end(), kill=kfold_plugin.end()]

    # this best validation error is then forwarded by single_crossval_run
    sched.terminate(on=kfold_measure.end())
    
    return sched


#### MAIN LOOP ####
rbm1 = ...
rbm2 = ...
dataset = ....
dbn_trainer = dbn_trainer(rbm1, rbm2)
kfold_plugin = KFold([rbm1, rbm2], dataset)
kfold_measure = ...

# manually add "hook" to monitor early stopping statistics
# NB: advantage of plugins is that this code can go anywhere ...
print_stat.act(pretrain_layer1, on=pretrain_layer1.plugins['early_stop'].step())

#### THIS SHOULD CORRESPOND TO THE OUTER LOOP ####
sched = Scheduler()

hyperparam_change = DBN_HyperParam([rbm1, rbm2])
hyperparam_test = single_crossval_run(dbn_trainer, kfold_plugin, kfold_measure) 

hyperparam_change.act(sched, on=[sched.begin(), hyperparam_test.end()])
hyperparam_test.act(sched, on=hyperparam_change.step())

sched.terminate(hyperparam_change.end())


##### RUN THE WHOLE DAMN THING #####
sched.run()