Mercurial > pylearn
view datasets/MNIST.py @ 507:b8e6de17eaa6
modifs to smallNorb
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Wed, 29 Oct 2008 18:06:49 -0400 |
parents | 74b3e65f5f24 |
children | 58810b63292b |
line wrap: on
line source
""" Various routines to load/access MNIST data. """ from __future__ import absolute_import import os import numpy from ..amat import AMat from .config import data_root def head(n=10, path=None): """Load the first MNIST examples. Returns two matrices: x, y. x has N rows of 784 columns. Each row of x represents the 28x28 grey-scale pixels in raster order. y is a vector of N integers. Each element y[i] is the label of the i'th row of x. """ path = os.path.join(data_root(), 'mnist','mnist.amat') if path is None else path dat = AMat(path=path, head=n) try: assert dat.input.shape[0] == n assert dat.target.shape[0] == n except Exception , e: raise Exception("failed to read MNIST data", (dat, e)) return dat.input, numpy.asarray(dat.target, dtype='int64').reshape(dat.target.shape[0]) def train_valid_test(ntrain=50000, nvalid=10000, ntest=10000, path=None): all_x, all_targ = head(ntrain+nvalid+ntest, path=path) train = all_x[0:ntrain], all_targ[0:ntrain] valid = all_x[ntrain:ntrain+nvalid], all_targ[ntrain:ntrain+nvalid] test = all_x[ntrain+nvalid:ntrain+nvalid+ntest], all_targ[ntrain+nvalid:ntrain+nvalid+ntest] return train, valid, test def all(path=None): return head(n=None, path=path)