Mercurial > pylearn
view nnet_ops.py @ 113:b6bc1e769b36
Automated merge with ssh://p-omega1@lgcm.iro.umontreal.ca/tlearn
author | Frederic Bastien <bastienf@iro.umontreal.ca> |
---|---|
date | Wed, 07 May 2008 12:12:48 -0400 |
parents | 76e5c0f37165 |
children | 3ef569b92fba |
line wrap: on
line source
import theano from theano import tensor, gof, scalar import numpy ############ # # SCALAR OPS # class ScalarSigmoid(scalar.FloatUnaryScalarOp): @staticmethod def st_impl(x): if x < -30.0: return 0.0 if x > 30.0: return 1.0 return 1.0 / (1.0 + numpy.exp(-x)) def impl(self, x): return ScalarSigmoid.st_impl(x) def grad(self, (x,), (gz,)): y = scalar_sigmoid(x) return [gz * y * (1.0 - y)] def c_foreach(self, (x,), (z,), sub): if 'float' in self.inputs[0].dtype: return """%(z)s = %(x)s < -30.0 ? 0.0 : %(x)s > 30.0 ? 1.0 : 1.0 /(1.0+exp(-%(x)s));""" % locals() raise NotImplementedError('only floatingpoint is implemented') scalar_sigmoid = gof.op.constructor(ScalarSigmoid) Sigmoid, sigmoid, SigmoidInplace, sigmoid_inplace =\ tensor.broadcast(ScalarSigmoid, 'Sigmoid') class ScalarSoftplus(scalar.FloatUnaryScalarOp): @staticmethod def static_impl(x): if x < -30.0: return 0.0 if x > 30.0: return x return numpy.log1p(numpy.exp(x)) def impl(self, x): return ScalarSoftplus.static_impl(x) def grad(self, (x,), (gz,)): return [gz * scalar_sigmoid(x)] def c_foreach(self, (x,), (z,), sub): if 'float' in self.inputs[0].dtype: return """%(z)s = %(x)s < -30.0 ? 0.0 : %(x)s > 30.0 ? %(x)s : log1p(exp(%(x)s));""" % locals() raise NotImplementedError('only floating point x is implemented') scalar_softplus = gof.op.constructor(ScalarSoftplus) Softplus, softplus, SoftplusInplace, softplus_inplace =\ tensor.broadcast(ScalarSoftplus, 'Softplus') ############ # # TENSOR OPS # class CrossentropySoftmax1HotWithBias(gof.op.Op): """A special compound L{Op} for the output of neural-net classifiers. @type x: is a matrix of floats (32 or 64) @type b: is a [row] vector of floats (32 or 64), length is number of cols in x @type y_idx: a [column] vector of int (32 or 64), length is number of rows in x @precondition: every entry in y_idx is a valid (non-negative) column index into x This L{Op} has two outputs: - KL(softmax(x+b), y) - softmax(x+b) softmax(x[i]) is the i'th distribution over len(x[i]) options y_idx[i] is an integer index, encoding a 1-hot distribution. In practice, when we're trying to do classification, we have one row in x and y_idx per example, and y[i] is the index of the (correct) class of the i'th example. """ nin=3 nout=2 def __init__(self, x, b, y_idx, **kwargs): x = tensor._as_tensor(x) b = tensor._as_tensor(b) y_idx = tensor._as_tensor(y_idx) if len(x.broadcastable) != 2 \ or x.dtype not in ['float32', 'float64']: raise ValueError('x must be 2-d tensor of floats') if len(b.broadcastable) != 1 \ or x.dtype not in ['float32', 'float64']: raise ValueError('x must be 1-d tensor of floats') if len(y_idx.broadcastable) != 1 \ or y_idx.dtype not in ['int32', 'int64']: raise ValueError('x must be 1-d tensor of ints') # TODO: Is this correct? It used to be y, not y_idx nll = tensor.Tensor(x.dtype, y_idx.broadcastable) # nll = Tensor(x.dtype, y.broadcastable) sm = tensor.Tensor(x.dtype, x.broadcastable) self.inputs = [x, b, y_idx] self.outputs = [nll, sm] def perform(self): x, b, y_idx = [i.data for i in self.inputs] if b.shape[0] != x.shape[1]: raise ValueError('b must have same number of columns as x') if y_idx.shape[0] != x.shape[0]: raise ValueError('y_idx must have same number of rows as x') sm = numpy.zeros_like(x) # softmax nll = numpy.zeros(x.shape[0]) #nll(y | softmax(x)) for i in xrange(sm.shape[0]): row = x[i] + b sm[i] = numpy.exp(row - numpy.max(row)) #softmax sm[i] *= 1.0 / numpy.sum(sm[i]) #vector scale nll[i] = -numpy.log( sm[i, y_idx[i]]) #cross-entropy self.outputs[0].data = nll self.outputs[1].data = sm def grad(self, (x, b, y_idx), (g_nll, g_sm)): if g_sm is not None: raise NotImplementedError() nll, sm = crossentropy_softmax_1hot_with_bias(x, b, y_idx) dx = CrossentropySoftmax1HotWithBiasDx(g_nll, sm, y_idx).outputs[0] db = tensor.Sum(dx, axis = [0]).outputs[0] return dx, db, None def c_headers(self): return ['<iostream>'] def c_code(self, (x, b, y_idx), (nll, sm), sub): # this implementation was lifted from # /u/bergstrj/cvs/bergstrj/src/feb07/nn.cxx #TODO: put this into a templated function, in the support code #TODO: declare the max of each row as an Op output #TODO: set error messages for failures in this code return """ npy_intp* Nx = %(x)s->dimensions; if (%(x)s->nd != 2) { PyErr_SetString(PyExc_ValueError, "a not 2d tensor"); %(fail)s; } if (%(b)s->nd != 1) { PyErr_SetString(PyExc_ValueError, "b not 1d tensor"); %(fail)s; } if (%(y_idx)s->nd != 1) { PyErr_SetString(PyExc_ValueError, "y_idx not 1d tensor"); %(fail)s; } if (%(x)s->descr->type_num != PyArray_DOUBLE) { PyErr_SetString(PyExc_TypeError, "a not float64"); %(fail)s; } if (%(b)s->descr->type_num != PyArray_DOUBLE) { PyErr_SetString(PyExc_TypeError, "b not float64"); %(fail)s; } if (%(y_idx)s->descr->type_num != PyArray_INT64) { PyErr_SetString(PyExc_TypeError, "y_idx not int64"); %(fail)s; } if ((%(x)s->dimensions[1] != %(b)s->dimensions[0]) || (%(x)s->dimensions[0] != %(y_idx)s->dimensions[0])) { PyErr_SetString(PyExc_ValueError, "dimension mismatch in arguments"); %(fail)s; } if ((NULL == %(nll)s) //initial condition || (%(nll)s->dimensions[0] != %(y_idx)s->dimensions[0])) { if (NULL != %(nll)s) Py_XDECREF(%(nll)s); %(nll)s = (PyArrayObject*)PyArray_SimpleNew(1, PyArray_DIMS(%(y_idx)s), type_num_%(x)s); if(!%(nll)s) { PyErr_SetString(PyExc_MemoryError, "failed to alloc nll output"); %(fail)s; } } if ((NULL == %(sm)s) || (%(sm)s->dimensions[0] != %(x)s->dimensions[0]) || (%(sm)s->dimensions[1] != %(x)s->dimensions[1])) { if (NULL != %(sm)s) Py_XDECREF(%(sm)s); %(sm)s = (PyArrayObject*)PyArray_SimpleNew(2, PyArray_DIMS(%(x)s), type_num_%(x)s); if(!%(sm)s) { // The normal cleanup code will take care of %(nll)s // Py_XDECREF(%(nll)s); %(nll)s=NULL; PyErr_SetString(PyExc_MemoryError, "failed to alloc sm output"); %(fail)s } } for (size_t i = 0; i < Nx[0]; ++i) { size_t j; double sum = 0.0; bool discount_max = false; const double* __restrict__ x_i = (double*)(%(x)s->data + %(x)s->strides[0] * i); const double* __restrict__ b_i = (double*)(%(b)s->data); const long int y_i = ((long int*)(%(y_idx)s->data + %(y_idx)s->strides[0] * i))[0]; double* __restrict__ sm_i = (double*)(%(sm)s->data + %(sm)s->strides[0] * i); double* __restrict__ nll_i = (double*)(%(nll)s->data + %(nll)s->strides[0] * i); npy_intp Sx = %(x)s->strides[1]/sizeof(double); npy_intp Sb = %(b)s->strides[0]/sizeof(double); npy_intp Ssm = %(sm)s->strides[1]/sizeof(double); size_t row_max_j=0; double row_max = x_i[0] + b_i[0]; //try to compute sum and sm the easy way for (j = 0; j < Nx[1]; ++j) { double row_ij = x_i[j * Sx] + b_i[j * Sb]; row_max_j = (row_ij > row_max) ? j : row_max_j; row_max = (row_ij > row_max) ? row_ij : row_max; double sm_ij = exp(row_ij); sum += sm_ij; sm_i[j * Ssm] = sm_ij; } if ((0.0 == sum) || (isinf(sum))) { //our cheap trick didn't work... try again and do it better. discount_max = true; sum = 0.0; //reset sum and recompute.... for (j = 0; j < Nx[1]; ++j) { double row_ij = x_i[j * Sx] + b_i[j * Sb]; double sm_ij = exp(row_ij - row_max); sum += sm_ij; sm_i[j * Ssm] = sm_ij; } if ( (0.0 == sum) || (isinf(sum))) { //that was our best... %(fail)s; } //if we still can't sum it up, we're screwed. //So far, this assertion has never failed... } //cblas_dscal(x.N, 1.0 / sum, &mat_at(s,i,0), s.n); double sum_inv = 1.0 / sum; for (j = 0; j < Nx[1]; ++j) { sm_i[j * Ssm] *= sum_inv; } if (y_i >= Nx[1]) { %(fail)s; } nll_i[0] = - x_i[y_i*Sx] - b_i[y_i*Sb] + (discount_max ? row_max : 0.0) + log(sum); //mat_at(y,i,0) = -log( mat_at(s,i,t[i])); //less accurate? //mat_at(y,i,0) = - mat_at(x,i,t[i]) - mat_at(b,0,t[i]) + (discount_max ? maxi : 0.0) + log(sum); } """ % dict(locals(), **sub) crossentropy_softmax_1hot_with_bias = \ gof.op.constructor(CrossentropySoftmax1HotWithBias) class CrossentropySoftmax1HotWithBiasDx (gof.op.Op): nin=3 nout=1 """Gradient wrt x of the CrossentropySoftmax1Hot Op""" def __init__(self, dy, sm, y_idx,**kwargs): dy = tensor._as_tensor(dy) sm = tensor._as_tensor(sm) y_idx = tensor._as_tensor(y_idx) self.inputs = [dy, sm, y_idx] self.outputs = [tensor.Tensor(sm.dtype, sm.broadcastable)] def perform(self): dy,sm,y_idx = [i.data for i in self.inputs] dx = numpy.zeros_like(sm) for i in xrange(sm.shape[0]): dx[i] = dy[i] * sm[i] #vector scale dx[i, y_idx[i]] -= dy[i] #scalar decrement self.outputs[0].data = dx def grad(self, *args): raise NotImplementedError() def c_code(self, (dnll, sm, y_idx), (dx,), sub): return """ if ((%(dnll)s->descr->type_num != PyArray_DOUBLE) || (%(sm)s->descr->type_num != PyArray_DOUBLE) || (%(y_idx)s->descr->type_num != PyArray_INT64)) { PyErr_SetString(PyExc_TypeError, "types should be float64, float64, int64"); %(fail)s; } if ((%(dnll)s->nd != 1) || (%(sm)s->nd != 2) || (%(y_idx)s->nd != 1)) { PyErr_SetString(PyExc_ValueError, "rank error"); %(fail)s; } if ((%(dnll)s->dimensions[0] != %(sm)s->dimensions[0]) || (%(dnll)s->dimensions[0] != %(y_idx)s->dimensions[0])) { PyErr_SetString(PyExc_ValueError, "dimension mismatch"); %(fail)s; } if ((NULL == %(dx)s) || (%(dx)s->dimensions[0] != %(sm)s->dimensions[0]) || (%(dx)s->dimensions[1] != %(sm)s->dimensions[1])) { if (NULL != %(dx)s) Py_XDECREF(%(dx)s); %(dx)s = (PyArrayObject*)PyArray_SimpleNew(2, PyArray_DIMS(%(sm)s), type_num_%(sm)s); if(!%(dx)s) { PyErr_SetString(PyExc_MemoryError, "failed to alloc dx output"); %(fail)s } } for (size_t i = 0; i < %(dx)s->dimensions[0]; ++i) { const double dnll_i = ((double*)(%(dnll)s->data + %(dnll)s->strides[0] * i))[0]; const long int y_i = ((long int*)(%(y_idx)s->data + %(y_idx)s->strides[0] * i))[0]; const double* __restrict__ sm_i = (double*)(%(sm)s->data + %(sm)s->strides[0] * i); npy_intp Ssm = %(sm)s->strides[1]/sizeof(double); double* __restrict__ dx_i = (double*)(%(dx)s->data + %(dx)s->strides[0] * i); npy_intp Sdx = %(dx)s->strides[1]/sizeof(double); for (size_t j = 0; j < %(dx)s->dimensions[1]; ++j) { dx_i[j * Sdx] = dnll_i * sm_i[j * Ssm]; } if (y_i >= %(dx)s->dimensions[1]) { %(fail)s; } dx_i[y_i * Sdx] -= dnll_i; } """ % dict(locals(), **sub) def crossentropy_softmax_1hot(x, y_idx, **kwargs): b = tensor.zeros_like(x[0,:]) return crossentropy_softmax_1hot_with_bias(x, b, y_idx, **kwargs)