view doc/v2_planning/requirements.txt @ 1176:b154979782bd

add the API_learner to the toc.
author Frederic Bastien <nouiz@nouiz.org>
date Fri, 17 Sep 2010 16:19:48 -0400
parents 1f5465622394
children 7d34edde029d
line wrap: on
line source

============
Requirements
============


Application Requirements
========================

Terminology and Abbreviations:
------------------------------

MLA - machine learning algorithm

learning problem - a machine learning application typically characterized by a
dataset (possibly dataset folds) one or more functions to be learned from the
data, and one or more metrics to evaluate those functions.  Learning problems
are the benchmarks for empirical model comparison.

n. of - number of

SGD - stochastic gradient descent

Users:
------

- New masters and PhD students in the lab should be able to quickly move into
  'production' mode without having to reinvent the wheel.

- Students in the two ML classes, able to play with the library to explore new
  ML variants. This means some APIs (e.g. Experiment level) must be really well
  documented and conceptually simple.

- Researchers outside the lab (who might study and experiment with our
  algorithms)

- Partners outside the lab (e.g. Bell, Ubisoft) with closed-source commercial
  projects.

Uses:
-----

R1. reproduce previous work (our own and others')

R2. explore MLA variants by swapping components (e.g.  optimization algo, dataset,
  hyper-parameters)

R3. analyze experimental results (e.g. plotting training curves, finding best
  models, marginalizing across hyper-parameter choices)

R4. disseminate (or serve as platform for disseminating) our own published algorithms

R5. provide implementations of common MLA components (e.g. classifiers, datasets,
  optimization algorithms, meta-learning algorithms)

R6. drive large scale parallizable computations (e.g. grid search, bagging,
  random search)

R7. provide implementations of standard pre-processing algorithms (e.g. PCA,
  stemming, Mel-scale spectrograms, GIST features, etc.)

R8. provide high performance suitable for large-scale experiments

R9. be able to use the most efficient algorithms in special case combinations of
  learning algorithm components (e.g. when there is a fast k-fold validation
  algorithm for a particular model family, the library should not require users
  to rewrite their standard k-fold validation script to use it)

R10. support experiments on a variety of datasets (e.g. movies, images, text,
  sound, reinforcement learning?)

R11. support efficient computations on datasets larger than RAM and GPU memory

R12. support infinite datasets (i.e. generated on the fly)

R13. apply trained models "in production".
  - e.g. say you try many combinations of preprocessing, models and associated
    hyper-parameters, and want to easily be able to recover the full "processing
    pipeline" that performs best, and use it on real/test data later.

OD comments: Note that R9 and R13 may conflict with each other. Some
optimizations performed by R9 may modify the input "symbolic graph" in such a
way that extracting the required components for "production purpose" (R13)
could be made more difficult (or even impossible). Imagine for instance that
the graph is modified to take advantage of the fact that k-fold validation can
be performed efficiently internally by some specific algorithm. Then it may
not be obvious anymore how to remove the k-fold split in the saved model you
want to use in production.