view doc/v2_planning/learn_meeting.py @ 1092:aab9c261361c

neural_net: Added info about how PLearn was doing it
author Olivier Delalleau <delallea@iro>
date Sun, 12 Sep 2010 15:12:19 -0400
parents 8c448829db30
children
line wrap: on
line source



def bagging(learner_factory):
    for i in range(N):
        learner_i = learner_factory.new()
        # todo: get dataset_i ??
        learner_i.use_dataset(dataset_i)
        learner_i.train()
'''
 List of tasks types:
  Attributes

   sequential
   spatial
   structured
   semi-supervised
   missing-values


  Supervised (x,y)

   classification
   regression
   probabilistic classification
   ranking
   conditional density estimation
   collaborative filtering
   ordinal regression ?= ranking 

  Unsupervised (x)

   de-noising
   feature learning ( transformation ) PCA, DAA
   density estimation
   inference

  Other

   generation (sampling)
   structure learning ???


Notes on metrics & statistics:
   - some are applied to an example, others on a batch
   - most statistics are on the dataset
'''
class Learner(Object):
    
    #def use_dataset(dataset)

    # return a dictionary of hyperparameters names(keys)
    # and value(values) 
    def get_hyper_parameters()
    def set_hyper_parameters(dictionary)


    
    
    # Ver B
    def eval(dataset)
    def predict(dataset)

    # Trainable
    def train(dataset)   # train until complition

    # Incremental
    def use_dataset(dataset)
    def adapt(n_steps =1)
    def has_converged()

    # 

class HyperLearner(Learner):

    ### def get_hyper_parameter_distribution(name)
    def set_hyper_parameters_distribution(dictionary)