Mercurial > pylearn
view linear_regression.py @ 90:a289b8bed64c
corrected comment
author | Frederic Bastien <bastienf@iro.umontreal.ca> |
---|---|
date | Mon, 05 May 2008 17:13:07 -0400 |
parents | 3499918faa9d |
children | c4726e19b8ec |
line wrap: on
line source
from learner import * from theano import tensor as t from compile import Function from theano.scalar import as_scalar # this is one of the simplest example of learner, and illustrates # the use of theano class LinearRegression(Learner): """ Implement linear regression, with or without L2 regularization (the former is called Ridge Regression and the latter Ordinary Least Squares). The predictor is obtained analytically. The L2 regularization coefficient is obtained analytically. For each (input[t],output[t]) pair in a minibatch,:: output_t = b + W * input_t where b and W are obtained by minimizing:: lambda sum_{ij} W_{ij}^2 + sum_t ||output_t - target_t||^2 Let X be the whole training set inputs matrix (one input example per row), with the first column full of 1's, and Let Y the whole training set targets matrix (one example's target vector per row). Let theta = the matrix with b in its first column and W in the others, then each theta[:,i] is the solution of the linear system:: XtX * theta[:,i] = XtY[:,i] where XtX is a (n_inputs+1)x(n_inputs+1) matrix containing X'*X plus lambda on the diagonal except at (0,0), and XtY is a (n_inputs+1)*n_outputs matrix containing X'*Y. The fields and attributes expected and produced by use and update are the following: - Input and output fields (example-wise quantities): - 'input' (always expected by use and update as an input_dataset field) - 'target' (optionally expected by use and update as an input_dataset field) - 'output' (optionally produced by use as an output dataset field) - 'squared_error' (optionally produced by use as an output dataset field, needs 'target') = example-wise squared error - optional input attributes (optionally expected as input_dataset attributes) - 'lambda' (only used by update) - 'b' (only used by use) - 'W' (only used by use) - optional output attributes (available in self and optionally in output dataset) - 'b' (only set by update) - 'W' (only set by update) - 'regularization_term' (only set by update) - 'XtX' (only set by update) - 'XtY' (only set by update) """ # definitions specifiques a la regression lineaire: def global_inputs(self): self.lambda = as_scalar(0.,'lambda') self.theta = t.matrix('theta') self.W = self.theta[:,1:] self.b = self.theta[:,0] self.XtX = t.matrix('XtX') self.XtY = t.matrix('XtY') def global_outputs(self): self.regularizer = self.lambda * t.dot(self.W,self.W) self.loss = self.regularizer + t.sum(self.squared_error) # this only makes sense if the whole training set fits in memory in a minibatch self.loss_function = Function([self.W,self.lambda,self.squared_error],[self.loss]) def initialize(self): self.XtX.resize((1+self.n_inputs,1+self.n_inputs)) self.XtY.resize((1+self.n_inputs,self.n_outputs)) self.XtX.data[:,:]=0 self.XtY.data[:,:]=0 numpy.diag(self.XtX.data)[1:]=self.lambda.data def updated_variables(self): self.new_XtX = self.XtX + t.dot(self.extended_input.T,self.extended_input) self.new_XtY = self.XtY + t.dot(self.extended_input.T,self.target) self.new_theta = t.solve(self.XtX,self.XtY) def minibatch_wise_inputs(self): self.input = t.matrix('input') # n_examples x n_inputs self.target = t.matrix('target') # n_examples x n_outputs def minibatch_wise_outputs(self): # self.input is a (n_examples, n_inputs) minibatch matrix self.extended_input = t.prepend_one_to_each_row(self.input) self.output = t.dot(self.input,self.W.T) + self.b # (n_examples , n_outputs) matrix self.squared_error = t.sum_within_rows(t.sqr(self.output-self.target)) # (n_examples ) vector def attributeNames(self): return ["lambda","b","W","regularization_term","XtX","XtY"] def defaultOutputFields(self, input_fields): output_fields = ["output"] if "target" in input_fields: output_fields.append("squared_error") return output_fields # poutine generale basee sur ces fonctions def minibatchwise_use_functions(self, input_fields, output_fields, stats_collector): if not output_fields: output_fields = self.defaultOutputFields(input_fields) if stats_collector: stats_collector_inputs = stats_collector.inputUpdateAttributes() for attribute in stats_collector_inputs: if attribute not in input_fields: output_fields.append(attribute) key = (input_fields,output_fields) if key not in self.use_functions_dictionary: self.use_functions_dictionary[key]=Function(self.names2attributes(input_fields), self.names2attributes(output_fields)) return self.use_functions_dictionary[key] def attributes(self,return_copy=False): return self.names2attributes(self.attributeNames()) def names2attributes(self,names,return_Result=False, return_copy=False): if return_Result: if return_copy: return [copy.deepcopy(self.__getattr__(name)) for name in names] else: return [self.__getattr__(name) for name in names] else: if return_copy: return [copy.deepcopy(self.__getattr__(name).data) for name in names] else: return [self.__getattr__(name).data for name in names] def use(self,input_dataset,output_fieldnames=None,test_stats_collector=None,copy_inputs=True): minibatchwise_use_function = minibatchwise_use_functions(input_dataset.fieldNames(),output_fieldnames,test_stats_collector) virtual_output_dataset = ApplyFunctionDataSet(input_dataset, minibatchwise_use_function, True,DataSet.numpy_vstack, DataSet.numpy_hstack) # actually force the computation output_dataset = CachedDataSet(virtual_output_dataset,True) if copy_inputs: output_dataset = input_dataset | output_dataset # compute the attributes that should be copied in the dataset output_dataset.setAttributes(self.attributeNames(),self.attributes(return_copy=True)) if test_stats_collector: test_stats_collector.update(output_dataset) for attribute in test_stats_collector.attributeNames(): output_dataset[attribute] = copy.deepcopy(test_stats_collector[attribute]) return output_dataset def update(self,training_set,train_stats_collector=None): self.update_start() for minibatch in training_set.minibatches(self.training_set_input_fields, minibatch_size=self.minibatch_size): self.update_minibatch(minibatch) if train_stats_collector: minibatch_set = minibatch.examples() minibatch_set.setAttributes(self.attributeNames(),self.attributes()) train_stats_collector.update(minibatch_set) self.update_end() return self.use def __init__(self,lambda=0.,max_memory_use=500): """ @type lambda: float @param lambda: regularization coefficient """ W=t.matrix('W') # b is a broadcastable row vector (can be replicated into # as many rows as there are examples in the minibach) b=t.row('b') minibatch_input = t.matrix('input') # n_examples x n_inputs minibatch_target = t.matrix('target') # n_examples x n_outputs minibatch_output = t.dot(minibatch_input,W.T) + b # n_examples x n_outputs lambda = as_scalar(lambda) regularizer = self.lambda * t.dot(W,W) example_squared_error = t.sum_within_rows(t.sqr(minibatch_output-minibatch_target)) self.output_function = Function([W,b,minibatch_input],[minibatch_output]) self.squared_error_function = Function([minibatch_output,minibatch_target],[self.example_squared_error]) self.loss_function = Function([W,squared_error],[self.regularizer + t.sum(self.example_squared_error)]) self.W=None self.b=None self.XtX=None self.XtY=None def forget(self): if self.W: self.XtX *= 0 self.XtY *= 0 def use(self,input_dataset,output_fieldnames=None,copy_inputs=True): input_fieldnames = input_dataset.fieldNames() assert "input" in input_fieldnames if not output_fields: output_fields = ["output"] if "target" in input_fieldnames: output_fields += ["squared_error"] else: if "squared_error" in output_fields or "total_loss" in output_fields: assert "target" in input_fieldnames use_functions = [] for output_fieldname in output_fieldnames: if output_fieldname=="output": use_functions.append(self.output_function) elif output_fieldname=="squared_error": use_functions.append(lambda self.output_function) n_examples = len(input_dataset) for minibatch in input_dataset.minibatches(minibatch_size=minibatch_size, allow_odd_last_minibatch=True): use_function(