view _test_dataset.py @ 233:9e96fe8b955c

moved the function from misc.py that have dependency on theano in misc_theano.py
author Frederic Bastien <bastienf@iro.umontreal.ca>
date Tue, 27 May 2008 15:59:02 -0400
parents 58e17421c69c
children 174374d59405
line wrap: on
line source

from dataset import *
from math import *
import unittest
import sys
import numpy as N

def _sum_all(a):
    s=a
    while isinstance(s,numpy.ndarray):
        s=sum(s)
    return s
    
class T_arraydataset(unittest.TestCase):
    def setUp(self):
        numpy.random.seed(123456)


    def test_ctor_len(self):
        n = numpy.random.rand(8,3)
        a=ArrayDataSet(n)
        self.failUnless(a.data is n)
        self.failUnless(a.fields is None)

        self.failUnless(len(a) == n.shape[0])
        self.failUnless(a[0].shape == (n.shape[1],))

    def test_iter(self):
        arr = numpy.random.rand(8,3)
        a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,3)})
        for i, example in enumerate(a):
            self.failUnless(numpy.all( example['x'] == arr[i,:2]))
            self.failUnless(numpy.all( example['y'] == arr[i,1:3]))

    def test_zip(self):
        arr = numpy.random.rand(8,3)
        a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,3)})
        for i, x in enumerate(a.zip("x")):
            self.failUnless(numpy.all( x == arr[i,:2]))

    def test_minibatch_basic(self):
        arr = numpy.random.rand(10,4)
        a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,4)})
        for i, mb in enumerate(a.minibatches(minibatch_size=2)): #all fields
            self.failUnless(numpy.all( mb['x'] == arr[i*2:i*2+2,0:2]))
            self.failUnless(numpy.all( mb['y'] == arr[i*2:i*2+2,1:4]))

    def test_getattr(self):
        arr = numpy.random.rand(10,4)
        a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,4)})
        a_y = a.y
        self.failUnless(numpy.all( a_y == arr[:,1:4]))

    def test_minibatch_wraparound_even(self):
        arr = numpy.random.rand(10,4)
        arr2 = ArrayDataSet.Iterator.matcat(arr,arr)

        a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,4)})

        #print arr
        for i, x in enumerate(a.minibatches(["x"], minibatch_size=2, n_batches=8)):
            #print 'x' , x
            self.failUnless(numpy.all( x == arr2[i*2:i*2+2,0:2]))

    def test_minibatch_wraparound_odd(self):
        arr = numpy.random.rand(10,4)
        arr2 = ArrayDataSet.Iterator.matcat(arr,arr)

        a=ArrayDataSet(data=arr,fields={"x":slice(2),"y":slice(1,4)})

        for i, x in enumerate(a.minibatches(["x"], minibatch_size=3, n_batches=6)):
            self.failUnless(numpy.all( x == arr2[i*3:i*3+3,0:2]))
    

class T_renamingdataset(unittest.TestCase):
    def setUp(self):
        numpy.random.seed(123456)


    def test_hasfield(self):
        n = numpy.random.rand(3,8)
        a=ArrayDataSet(data=n,fields={"x":slice(2),"y":slice(1,4),"z":slice(4,6)})
        b=a.rename({'xx':'x','zz':'z'})
        self.failUnless(b.hasFields('xx','zz') and not b.hasFields('x') and not b.hasFields('y'))

class T_applyfunctiondataset(unittest.TestCase):
    def setUp(self):
        numpy.random.seed(123456)

    def test_function(self):
        n = numpy.random.rand(3,8)
        a=ArrayDataSet(data=n,fields={"x":slice(2),"y":slice(1,4),"z":slice(4,6)})
        b=a.apply_function(lambda x,y: x+y,x+1, ['x','y'], ['x+y','x+1'], False,False,False)
        print b.fieldNames()
        print b('x+y')
        



# to be used with a any new dataset
class T_dataset_tester(object):
    """
    This class' goal is to test any new dataset that is created
    Tests are (will be!) designed to check the normal behaviours
    of a dataset, as defined in dataset.py
    """


    def __init__(self,ds,runall=True) :
        """if interested in only a subset of test, init with runall=False"""
        self.ds = ds
        
        if runall :
            self.test1_basicstats(ds)
            self.test2_slicing(ds)
            self.test3_fields_iterator_consistency(ds)

    def test1_basicstats(self,ds) :
        """print basics stats on a dataset, like length"""

        print 'len(ds) = ',len(ds)
        print 'num fields = ', len(ds.fieldNames())
        print 'types of field: ',
        for k in ds.fieldNames() :
            print type(ds[0](k)[0]),
        print ''

    def test2_slicing(self,ds) :
        """test if slicing works properly"""
        print 'testing slicing...',
        sys.stdout.flush()
        
        middle = len(ds) / 2
        tenpercent = int(len(ds) * .1)
        set1 = ds[:middle+tenpercent]
        set2 = ds[middle-tenpercent:]
        for k in range(tenpercent + tenpercent -1):
            for k2 in ds.fieldNames() :
                if type(set1[middle-tenpercent+k](k2)[0]) == N.ndarray :
                    for k3 in range(len(set1[middle-tenpercent+k](k2)[0])) :
                        assert set1[middle-tenpercent+k](k2)[0][k3] == set2[k](k2)[0][k3]
                else :
                    assert set1[middle-tenpercent+k](k2)[0] == set2[k](k2)[0]
        assert tenpercent > 1
        set3 = ds[middle-tenpercent:middle+tenpercent:2]
        for k2 in ds.fieldNames() :
            if type(set2[2](k2)[0]) == N.ndarray :
                for k3 in range(len(set2[2](k2)[0])) :
                    assert set2[2](k2)[0][k3] == set3[1](k2)[0][k3]
            else :
                assert set2[2](k2)[0] == set3[1](k2)[0]

        print 'done'


    def test3_fields_iterator_consistency(self,ds) :
        """ check if the number of iterator corresponds to the number of fields"""
        print 'testing fields/iterator consistency...',
        sys.stdout.flush()

        # basic test
        maxsize = min(len(ds)-1,100)
        for iter in ds[:maxsize] :
            assert len(iter) == len(ds.fieldNames())
        if len(ds.fieldNames()) == 1 :
            print 'done'
            return

        # with minibatches iterator
        ds2 = ds.minibatches[:maxsize]([ds.fieldNames()[0],ds.fieldNames()[1]],minibatch_size=2)
        for iter in ds2 :
            assert len(iter) == 2

        print 'done'





###################################################################
# main
if __name__ == '__main__':
    unittest.main()