view random_transformation.py @ 476:8fcd0f3d9a17

added a few algorithms
author Olivier Breuleux <breuleuo@iro.umontreal.ca>
date Mon, 27 Oct 2008 17:26:00 -0400
parents 18702ceb2096
children
line wrap: on
line source

"""
New L{Op}s that aren't in core theano
"""

from theano import sparse
from theano import tensor
from theano import scalar
from theano.gof import op

from theano.sparse import _is_dense, _is_sparse, _is_dense_result, _is_sparse_result

import scipy.sparse

import numpy

class RowRandomTransformation(op.Op):
    """
    Given C{x}, a (sparse) matrix with shape (exmpls, dimensions), we
    multiply it by a deterministic random matrix of shape (dimensions,
    length) to obtain random transformation output of shape (exmpls,
    length).

    Each element of the deterministic random matrix is selected uniformly
    from [-1, +1).
    @todo: Use another random distribution?

    @note: This function should be written such that if length is
    increased, we obtain the same results (except longer). Similarly,
    the rows should be able to be permuted and get the same result in
    the same fashion.

    @todo: This may be slow?
    @todo: Rewrite for dense matrices too?
    @todo: Is there any way to verify the convention that each row is
    an example? Should I rename the variables in the code to make the
    semantics more explicit?
    @todo: AUTOTEST: Autotest that dense and spare versions of this are identical.
    @todo: Rename? Is Row the correct name? Maybe column-wise?

    @type  x: L{scipy.sparse.spmatrix}
    @param x: Sparse matrix to be randomly transformed with shape (exmpls, dimensions)
    @type  length: int
    @param length: The number of transformations of C{x} to be performed.
    @param initial_seed: Initial seed for the RNG.
    @rtype: L{numpy.ndarray}
    @return: Array with C{length} random transformations, with shape (exmpls, length)
    """

    import random
    """
    RNG used for random transformations.
    Does not share state with rest of program.
    @todo: Make STATIC and private. Ask James or Olivier how to make this more Pythonic.
    """
    _trng = random.Random()

    def __init__(self, x, length, initial_seed=0, **kwargs):
        """
        @todo: Which broadcastable values should I use?
        """
        assert 0        # Needs to be updated to Olivier's new Op creation approach
        op.Op.__init__(self, **kwargs)
        x = sparse.as_sparse(x)
        self.initial_seed = initial_seed
        self.length = length
        self.inputs = [x]
        self.outputs = [tensor.Tensor(x.dtype, broadcastable=[False, False])]
#        self.outputs = [tensor.Tensor(x.dtype, broadcastable=[True, True])]

    def _random_matrix_value(self, row, col, rows):
        """
        From a deterministic random matrix, find one element.
        @param row: The row of the element to be read.
        @param col: The column of the element to be read.
        @param row: The number of rows in the matrix.
        @type row: int
        @type col: int
        @type rows: int
        @note: This function is designed such that if we extend
        the number of columns in the random matrix, the values of
        the earlier entries is unchanged.
        @todo: Make this static
        """
        # Choose the random entry at (l, c)
        rngidx = col * rows + row
        # Set the random number state for this random entry
        # Note: This may be slow
        self._trng.seed(rngidx + self.initial_seed)

        # Determine the value for this entry
        val = self._trng.uniform(-1, +1)
#       print "Exmpl #%d, dimension #%d => Random projection #%d has idx %d (+ seed %d) and value %f" % (r, c, j, rngidx, self.initial_seed, val)
        return val

    def impl(self, xorig):
        assert _is_sparse(xorig)
        assert len(xorig.shape) == 2
        # Since conversions to and from the COO format are quite fast, you
        # can use this approach to efficiently implement lots computations
        # on sparse matrices.
        x = xorig.tocoo()
        (rows, cols) = x.shape
        tot = rows * cols
        out = numpy.zeros((rows, self.length))
#        print "l = %d" % self.length
#        print "x.getnnz() = %d" % x.getnnz()
        all = zip(x.col, x.row, x.data)
        all.sort()      # TODO: Maybe this is very slow?
        lastc = None
        lastl = None
        lastval = None
        for l in range(self.length):
            for (c, r, data) in all:
                assert c < cols
                assert r < rows
                if not c == lastc or not l == lastl:
                    lastc = c
                    lastl = l
                    lastval = self._random_matrix_value(c, l, cols)
                val = lastval
#                val = self._random_matrix_value(c, l, cols)
#                val = self._trng.uniform(-1, +1)
#                val = 1.0
                out[r][l] += val * data
        return out
    def __copy__(self):
        return self.__class__(self.inputs[0], self.length, self.initial_seed)
    def clone_with_new_inputs(self, *new_inputs):
        return self.__class__(new_inputs[0], self.length, self.initial_seed)
    def desc(self, *new_inputs):
        return (self.__class__, self.length, self.initial_seed)
row_random_transformation = RowRandomTransformation()